Контрольная работа по дисциплине «Электротехника»

При решении задач следует руководствоваться следующими правилами:

- 1. Каждый студент решает задачи в соответствии со своим вариантом (о выборе варианта см. ниже).
- 2. Перед тем, как приступить к решению задачи, необходимо изучить методы расчета и физические законы, положенные в основу решения.
- 3. По каждой задаче необходимо привести ее условие и расчетную схему, на которой указать принимаемые положительные направления искомых токов и напряжений.
- 4. Решение задачи следует сопровождать краткими пояснениями. Искомая величина вначале определяется в буквенном выражении, затем подставляются числовые значения величин, приводятся основные этапы преобразований и конечный результат, который должен ясно выделяться из общего текста с обязательным указанием его размерности.
- 5. При вычерчивании электрических схем следует пользоваться обозначениями, предусмотренными ГОСТом и требованиями ЕСКД. Схемы допускается вычерчивать «от руки».
- 6. При построении графиков на осях координат следует наносить равномерные шкалы для откладываемых величин и их размерности. Если в одной и той же системе строится несколько графиков, то для каждой изображаемой величины необходимо выбрать свой масштаб и соответствующим образом обозначить графики.
- 7. Если одна и та же задача решается несколькими методами, то во всех случаях одни и те же величины должны иметь одинаковые обозначения.

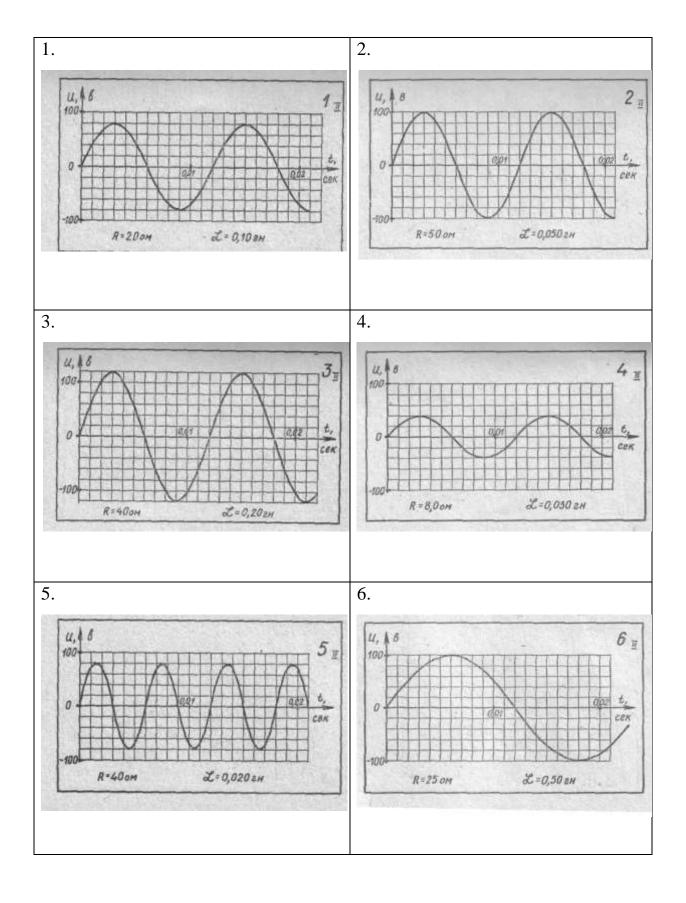
1. Линейные цепи постоянного тока

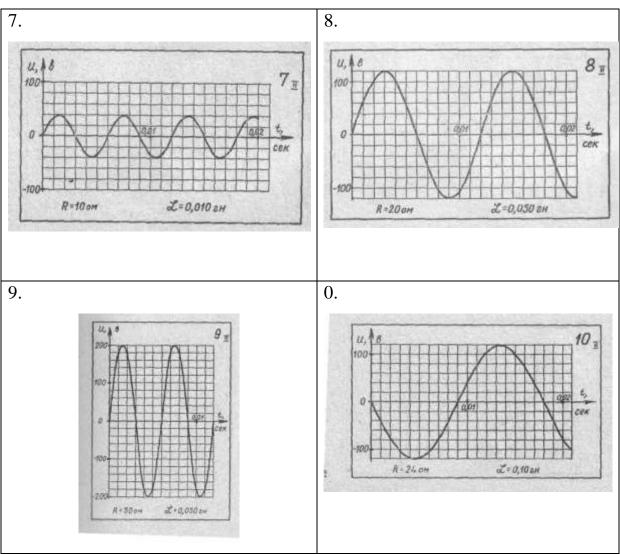
Для схемы рис.1. требуется:

- 1) составить уравнения по законам Кирхгофа для расчета токов во всех ветвях (решать их не следует);
 - 2) рассчитать токи методом контурных токов;
 - 3) рассчитать токи методом наложения;
 - 4) проверить баланс мощностей;
- 5) построить потенциальную диаграмму для любого контура, включающего в себя ветвь с источником ЭДС

Таблица вариантов Последняя EJ, r_1 , r_3 r_4 r5, r_2 Ом Ом Ом Ом Ом \boldsymbol{B} \boldsymbol{A} цифра шифра 12 12 12 120 2 0 6 6 1 12 12 24 24 12 140 1 15 10 10 8 8 80 3 9 2 3 20 20 18 9 60 10 12 48 4 10 6 12 1

	1.0	0	1.6			26	2
5	16 40	8 40	16 20	5 5	5 15	36 80	2 2
7	20	20	40	20	20	48	2
8	10	20	20	10	10	20	1
9	40	60	40	20	20	44	2
0)				1)	I		
$ \begin{array}{c} & \\ & \\ & \\ & \\ & \\ & \\ & \\ & $	r_4	r_1 r_3		r_1		$ \begin{array}{ccc} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \end{array} $	v-
$\begin{array}{c} 2) \\ \hline \\ r_1 \\ \hline \\ F_4 \\ \hline \end{array}$	r ₂ r ₅	<i>r</i> ₃		r_1	r_2	r ₄ r ₃ r ₅	
$\begin{array}{c} 4) \\ \hline \\ r_3 \end{array}$	r_2 E r_5	r_4		5)			r_2 r_3
6) E r ₄	r_2	<i>r</i> ₃		r_3		r_2 r_4 r_5	
8) r_1 r_2	<i>J</i>	r ₄		9) r_1	[$\Gamma)^{L}$	r_5 r_2 r_3


Рис.1


2. Цепи переменного тока

По графику переменного тока

- 1. Определить период и циклическую частота тока.
- 2. Определите амплитудное значение напряжения.
- 3. Вычислить действующее значение напряжения.
- 4. Вычислить: а) амплитудное и б) действующее значения тока при включении в цепь только активного сопротивления R. Перечертить данный график изменения напряжения со временем и на том же чертеже изобразить графическую зависимость силы тока от времени, выбрав подходящий масштаб.
- 5. Рассчитать реактивное и полное сопротивление, если в цепь будут включены последовательное сопротивление R и катушка с индуктивностью L.
 - 6. Вычислите амплитудное значение тока в этой цепи.
- 7. Определить емкость конденсатора, который следует включить последовательно в данную цепь, чтобы получить резонансное увеличение тока?

Варианты задания

Примечание. Номер варианта по последней цифре студенческого билета

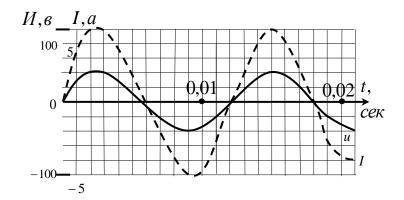
Пример выполнения

1. Период равен Т=0,012 с.

Циклическая (или круговая) частота

$$\omega_0 = \frac{2\pi}{T}$$
, $\omega_0 = \frac{2 \cdot 3.14}{0.012 cek} = 523 cek^{-1} \approx 523 cek^{-1}$

- 2. Амплитудное значение напряжения $U_0 = 40 \ \emph{e}$.
- 3. Действующее (или эффективное) значение напряжения


$$U = \frac{U_0}{\sqrt{2}}$$
, $U = \frac{40e}{1,41} = 28e$

- 4. Если в цепи только активное сопротивление R = 8 *ом*, то:
 - а) амплитудное значение тока

$$I_0 = \frac{U_0}{R}$$
, $I_0 = \frac{40e}{8oM} = 5a$;

б) действующее значение тока

$$I = \frac{I_0}{\sqrt{2}}$$
, $I = \frac{5a}{1,41} = 3,54a \approx 3,5a$

- 5. Цепь содержит не только активное сопротивление R=8 om, но еще и катушку с индуктивностью L=0,03 em
 - а) Индуктивное сопротивление

$$X_L = \omega_0 L$$
, $X_L = 523 cek^{-1} \cdot 0,032 H \approx 15,70 M \approx 160 M$;

б) Полное сопротивление

$$Z = \sqrt{R_a^2 + X_L^2}$$
, $Z = \sqrt{(8om)^2 + (16om)^2} = 18om$.

6. Амплитудное значение тока

$$I_0 = \frac{U_0}{Z}$$
, $I_0 = \frac{40e}{18oM} \approx 2.2a$

7. Для получения резонанса в цепь, содержащую катушку индуктивности $L = 0.03 \ \Gamma h$ и активное сопротивление $R = 8 \ om$, надо включить последовательно конденсатор электроемкостью C. При резонансе

$$wl = \frac{1}{wc}$$

$$w = \frac{1}{\sqrt{LC}}$$

$$c = \frac{1}{w^2L}$$

$$C = \frac{T^2}{4\pi^2L}$$

$$C = \frac{(0.012cek)^2}{4 \cdot 3.14^2 \cdot 0.03cH} = 12 \cdot 10^{-5} \phi = 120$$
мк ϕ