Автономная некоммерческая организация высшего образования «СЕВЕРО-ЗАПАДНЫЙ ОТКРЫТЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»

МЕТОДЧЕСКИЕ РЕКОМЕНДАЦИИ ПО ВЫПОЛНЕНИЮ КОНТРОЛЬНОЙ РАБОТЫ ПО ДИСЦИПЛИНЕ

«МЕХАНИКА ЖИДКОСТИ И ГАЗА»

Санкт-Петербург

ЗАДАЧА 1

ОПРЕДЕЛЕНИЕ ДАВЛЕНИЯ В АККУМУЛЯТОРЕ В МОМЕНТ ГИДРАВЛИЧЕСКОГО УДАРА

По стальному трубопроводу 2 из пневмогидравлического аккумулятора 1 подаётся рабочая жидкость плотностью

 $\rho = 900 \text{ кг/м}^2$ ивязкостью $\nu = 2 \cdot 10^{-5} \text{ м}^2/\text{c}$, с расходом Q.

В конце трубопровода установлен быстродействующий запорный клапан 3, время срабатывания которого равно t. Давление за клапаном атмосферное. Длинна трубопровода l, внутренний диаметр d, толщина стенки δ . Коэффициент сопротивления клапана в открытом положении ξ_{KJ} . Высота уровня жидкости ваккумуляторе z.

Определить давление в аккумуляторе в момент срабатывания запорного клапана

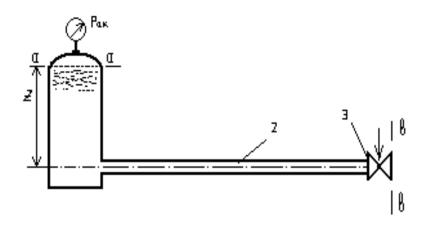


Рис. 13. Схема гидравлической системы

Таблица Варианты и исходные данные Параметры 0 3 2 4 5 8 Последняя цифра студента $O \cdot 10^{-3}$, M^3/c 1,1 1,2 | 1,5 | 0,9 | 1,2 1,0 1,1 1,4 1,0 0,9 L, M 20 22 29 27 24 22 20 24 25 27 $d \cdot 10^{-3}$, M 20 22 24 26 18 20 24 26 20 18 2,8 2,4 2,7 2,9 2.6 2,6 2,5 2,0 2,6 Z, M Предпоследняя цифра студента $\delta \cdot 10^{-3}$, M 1.6 1,8 | 1,8 | 1,6 | 1,6 1.6 1.8 1.4 1.4 Варианты и исходные данные Параметры 0 3 4 5 6 8 9 t₃·10⁻², c 2.0 2.0 3.0 3,5 2,5 3,0 2,0 2.5 3.0 3,0 3,3 | 3,0 | 3,1 $\zeta_{\kappa\underline{\pi}}$ 3.1 3,4 2,8 2,9 | 3,2 2,9

Методические указания к решению задачи

Решая задачу, используем:

- при установившемся движении уравнение Бернулли, а
- при гидравлическом ударе уравнение Жуковского.

Давление в аккумуляторе в момент срабатывания запорного клапана:

$$p_{a\kappa} = p_{cm} + p_{v\delta} \tag{1}$$

где: p_{cm} - избыточное статическое давление в аккумуляторе при установившемся течении в трубопроводе с расходом жидкости Q, p_{yo} — ударное давление, вызванное быстрым торможением потока при срабатывании запорного клапана.

Статическое давление определяется на основании уравнения Бернулли, составленного для контрольных сечений потока a-a, b-b.

$$p_{cm} = \left(\alpha + \xi_f\right) \frac{\rho v^2}{2} - \rho g z \tag{2}$$

где v – средняя скорость в сечении трубопровода при установившемся движении;

α - коэффициент кинетической энергии:

 $\alpha = 2$ – при ламинарном режиме

 $\alpha = 1,1$ - при турбулентном режиме.

 ξ_f - коэффициент сопротивления трубопровода;

$$\xi_f = \xi_{BX} + \xi_{K\Pi} + \lambda \frac{l}{d} \tag{3}$$

Где $\xi_{BX} = 0,5$ - коэффициент сопротивления на входе в трубопровод,

 λ – коэффициент гидравлического трения,

Коэффициент λ определяется по формулам:

$$\lambda = \frac{64}{Re}$$
 (ламинарныйрежимпри $Re < 2300$); (4)

$$\lambda = \frac{0.3164}{Re^{0.25}} (турбулентный режимпри Re > 2300), \tag{5}$$

соответствующий закону гладкой стенки.

$$S = \frac{\pi d^2}{4} \tag{6}$$

где 5 - площадь поперечного сечения потока в трубопроводе

$$v = \frac{Q}{S} \tag{7}$$

Число Рейнольдса:

$$Re = \frac{vd}{v} \tag{8}$$

$$\xi_f = \xi_{BX} + \xi_{KN} + \lambda \frac{l}{d} \tag{9}$$

где $\nu = 2 \cdot 10^{-5} \text{ м}^2/\text{c}$

Для определения ударного давления сначала вычисляем скорость распространения ударной волны.

$$C_{\gamma\delta} = \frac{\sqrt{\frac{E_V}{\rho}}}{\sqrt{1 + \frac{E_V}{E} \cdot \frac{d}{\delta}}}$$
 (10)

где $E_V = 1,4 \cdot 10^3 \text{МПа}$ - объёмный модуль упругости жидкости; $E = 2 \cdot 10^5 \text{МПа}$ - модуль упругости стали.

Находим время фазы гидравлического удара:

$$t_{\phi} = \frac{2l}{C_{y\delta}} \tag{11}$$

Из сопоставления t_{Φ} и t устанавливаем характер гидравлического удара, и в зависимости от характера определяем ударное давление: при полном гидравлическом ударе

$$p_{y\bar{\sigma}} = \rho v C_{y\bar{\sigma}} \tag{12}$$

- при не полном гидравлическом ударе

$$p_{y\bar{\sigma}} = \rho v C_{y\bar{\sigma}} \frac{t_{\phi}}{t} \tag{13}$$

ЛДалее находим искомую величину $p_{a\kappa}$.

ЗАДАЧА 2 определение гидравлических потерь

Гидравлическая система состоит из насоса **1**, трубопровода **2** и резервуара **4**. На трубопроводе **2** установлен обратный клапан **3**, препятствующий опорожнению резервуара при выключенном насосе.

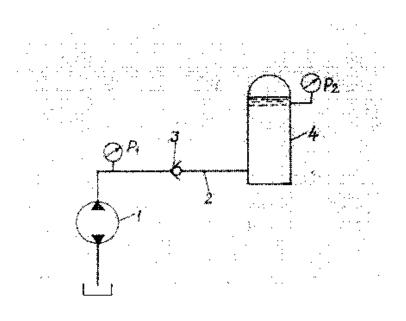


Рис. 1. Схема гидравлической системы

Насос подает рабочую жидкость плотностью $\rho = 900 \, \kappa z/M^3$ по трубопроводу 2 длиной I в резервуар 4, при этом ее расход равен Q. Давление p_2 в резервуаре поддерживается постоянным. Давление, развиваемое насосом, равно p_1 . Кинематический коэффициент вязкости жидкости равен v. Определить внутренний диаметр трубопровода, учитывая потери давления по длине Δp_1 , потери в обратном клапане Δp_{KT} и другие местные потери Δp_M , составляющие $10 \, \%$ от Δp_1 .

Таблица

	Варианты и исходные данные										
Параметры											
	0	1	2	3	4	5	6	7	8	9	
Последняя цифра шифра студента											
$\mathbf{Q} \times 10^{-3}, \mathbf{M}^3/\mathbf{c}$	0,5	0,6	0,4	0,7	0,8	1,0	0,6	0,8	0,7	0,5	
р ₁ , МПа	0,55	0,45	0,35	0,65	0,70	0,50	0,45	0,65	0,50	0,35	
р ₂ , МПа	0,25	0,20	0,15	0,30	0,35	0,25	0,20	0,30	0,25	0,15	
	,	,	ĺ	ĺ	ĺ	,		ĺ	,	,	
Δp_{KT} , МПа	0,05	0,04	0,06	0,06	0,05	0,04	0,03	0,04	0,03	0,06	
· KI	0,03	0,01	0,00	0,00	0,05	,,,,,	0,03	0,01	0,05	0,00	
	Предпоследняя цифра шифра студента										
		11pc	едпосле	цняя цио	рра шиф	рра студ	ента				

<i>l</i> ,м	8,5	7,6	8,8	9,2	9,4	9,6	9,0	8,0	8,4	8,3
v x10 ⁻⁵ ,м ² /c	5,0	4,5	3,0	2,0	3,5	2,5	5,0	4,5	2,5	2,5

Методические указания к решению

Внутренний диаметр трубопровода **d** следует подбирать исходя из формулы Дарси для потерь по длине Δp_l :

$$\Delta \boldsymbol{p}_l = \lambda \frac{l}{d} \boldsymbol{\rho} \frac{v^2}{2},$$

где λ - коэффициент гидравлического трения,

 \boldsymbol{v} - средняя скорость потока в трубопроводе,

$$v=\frac{Q}{S}$$

где S – площадь поперечного сечения потока в трубопроводе:

$$S=\frac{\pi D^2}{4}.$$

Коэффициент λ определяется по формулам:

Ламинарный режим Re<2300:

$$\lambda = \frac{64}{Re}.$$

Турбулентный режим Re>2300

$$\lambda = \frac{0.3164}{\text{Re}^{0.25}},$$

соответствующий закону сопротивления гладкой стенки.

Число Рейнольдса:

Re =
$$\frac{vd}{v}$$
.

В преобразованном виде формула Δp_l записывается следующим образом:

$$\Delta p_l = \frac{8lpQ^2}{\pi^2} \frac{\lambda}{d^5}.$$

Задаваясь значениями $\mathbf{d}=(10...25)*\mathbf{10}^{-3}$ м, определяем среднюю скорость \boldsymbol{v} , число \boldsymbol{Re} , затем коэффициент гидравлического трения $\boldsymbol{\lambda}$. Подставляя значения \mathbf{d} и $\boldsymbol{\lambda}$ в уравнение, вычисляем его правую часть. Левая часть уравнения определяется, исходя из баланса давления жидкости в трубопроводе:

$$\boldsymbol{p}_1 = \boldsymbol{p}_2 + \Delta \boldsymbol{p}_1 + \Delta \boldsymbol{p}_{\kappa \tau} + \Delta \boldsymbol{p}_{\kappa}$$

Поскольку $\Delta p_{M} = 0, 1\Delta p_{l}$, получаем:

$$\Delta p_1 = \frac{p_1 - p_2 - \Delta p_{\kappa n}}{1.1}.$$

Подобным образом проводим дальнейшие расчеты и сводим их в табл.2.

Таблица 2

d ,м	S, m ² *10 ⁻⁴	V, m/c	Re	λ	Δр1,МПа
10					
15					
20					
25					

Далее решаем эту задачу графоаналитическим методом.

Строим график $\Delta p_l = f(\mathbf{d})$, проецируем точку Δp_l , полученную в левой части уравнения и находим искомую величину d_{shymp} .

Задача № 3

Расчет гидравлической напорной системы, предназначенной для подачи СОЖ в металлорежущем станке.

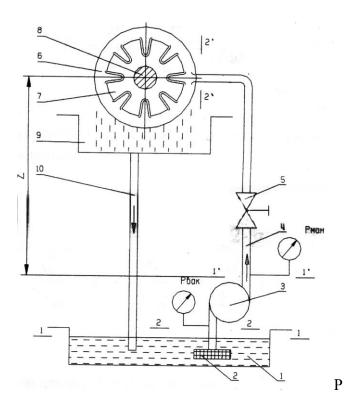


Рис. 1 Схема установки для подачи СОЖ в металлорежущем станке.

Смазывающе-охлаждающая жидкость (СОЖ) $\rho = 950 \, \mathrm{kr/m}^3$ и вязкостью $v = 2 \cdot 10^{-6} \, m^2 \, / c$ с помощью насоса 3 забирается из резервуара-отстойника 1 и по напорному трубопроводу 4 подается в коллектор 6 с шестью коническими сходящимися соплами 7, из которых жидкость разбрызгивается струями по поверхности обрабатываемой детали 8 (так называемое спрейерное охлаждение). Отработанная СОЖ собирается в поддон 9 и по трубопроводу 10 сливается в резервуар - отстойник.

На трубопроводе 4 установлен вентиль 5, регулирующий расход подаваемой СОЖ, а на всасывающем патрубке насоса - сетчатый фильтр 2, предотвращающий попадание крупных твердых частиц в систему охлаждения.

1- резервуар-отстойник; 2 - фильтр; 3 - насос; 4 - трубопровод; 5 - вентиль; 6 - коллектор; 7 - конические сходящиеся сопла; 8 - обрабатываемая деталь; 9 - поддон;10 - трубопровод.

Заданы следующие величины:

- $_{-}U_{c}$, $_{M/c}$ -скорость струй в соплах
- $_{\text{-}}d_{c}$,мм -диаметр сопел

- $_{ ext{-}}d_{e}$, $_{ ext{\tiny MM}}$ -диаметр всасывающего патрубка
- $_{ ext{-}}d_{\scriptscriptstyle H}$, $_{\scriptscriptstyle MM}$ -диаметр напорного трубопровода 4
- l , $\it m$ -длина напорного трубопровода 4
- ${\mathcal Z}$, ${\mathcal M}$ -расстояние по вертикали от насоса до центра коллектора
- -коэффициенты гидравлического сопротивления:

фильтра
$$\mathcal{L}_{\phi}$$
 , вентиля \mathcal{L}_{θ} и коллектора \mathcal{L}_{κ} .

Требуется определить:

- -расход подаваемой СОЖ Q, M^3/c ;
- -потребный напор Н, м, создаваемый насосом;
- -Затрачиваемую насосом мощность N, кВт, с учетом его КПД $\eta = 0.75$

Принять величину коэффициента скорости сопел $\varphi = 0.96$, коэффициент кинетической энергии α в уравнении Бернулли $\alpha = 2$ (при ламинарном течении и) $\alpha = 1.1$ (при турбулентном.)

Высоту всасывания насоса не учитывать.

Заданные величины приведены в таблице.

Таблица

Параметры	Варианты и исходные данные										Цифра шифра
	0	1	2	3	4	5	6	7	8	9	студента
$v_c, M/C$	8,0	8,5	7,5	7,0	8,0	8,5	7,5	7,0	8,5	8,0	последняя
d_c , MM	5	5	4	4	5	5	4	5	4	5	последняя
d_{s} , MM	20	18	18	18	20	20	20	18	20	18	последняя

$d_{\scriptscriptstyle H}$, MM	15	14	14	15	16	15	15	14	15	16	последняя
l, M	1,6	1,7	1,7	1,6	1,8	1,6	1,6	1,8	1,7	1,6	предпоследняя
Z, M	1,4	1,5	1,6	1,4	1,6	1,4	1,4	1,6	1,5	1,4	предпоследняя
ζ_{ϕ}	2,5	2,0	2,1	2,1	2,5	2,2	2,2	2,0	2,3	2,2	предпоследняя
$\zeta_{\scriptscriptstyle B}$	3,2	3,3	3,0	3,2	3,1	3,0	3,1	3,1	3,2	3,3	предпоследняя
ζ_{κ}	1,2	1,2	1,3	1,2	1,1	1,3	1,3	1,1	1,2	1,3	предпоследняя

Методические указания к выполнению задачи 1

Наибольший расход СОЖ Q_{max} при полном открытии вентиля определим по заданной скорости струи \mathbf{v}_{c} и поперечному сечению сопел, с учетом количества сопел - (n) по следующей формуле :

$$Q_{\text{max}} = v_c \cdot \frac{\pi \cdot d_c^2}{4} \cdot n$$

Величина потребного напора H определяется по величинам манометрического давления $P_{\mathit{ман}}$ в зоне нагнетания, и вакуума $P_{\mathit{вак}}$ в зоне всасывания насоса (см. рис.) по формуле :

$$H = \frac{P_{\text{\tiny MAH}} + P_{\text{\tiny BAK}}}{\rho \cdot g}$$

Для определения величин $P_{\text{ман}}$. и $P_{\text{вак}}$. воспользуемся уравнением Бернулли, соединив этим уравнением сечение потока 1-1 с 2-2 и 1 -1' с 2 -2' (см. рисунок), тогда:

$$z_{1} + \frac{P_{1}}{\rho \cdot g} + \alpha \cdot \frac{v_{1}^{2}}{2 \cdot g} = z_{2} + \frac{P_{2}}{\rho \cdot g} + \alpha \cdot \frac{v_{2}^{2}}{2 \cdot g} + h_{f_{1-2}}$$

$$z_{1}^{'} + \frac{P_{1}^{'}}{\rho \cdot g} + \alpha \cdot \frac{v_{1}^{'}}{2 \cdot g} = z_{2}^{'} + \frac{P_{2}^{'}}{\rho \cdot g} + \alpha \cdot \frac{v_{2}^{'}}{2 \cdot g} + h_{f_{1-2}}$$

В уравнениях:

z - геометрические высоты расположения сечений относительно выбранной плоскости сравнения;

Р - давление в указанных точках потока.

 U_1 - средняя скорость потока в сечении;

 $h_{\scriptscriptstyle f}$ - потеря напора на участке потока между сечениями;

lpha - коэффициент кинетической энергии.

Потери напора определяются по величине скоростного напора $\frac{\upsilon^2}{2g}$ и коэффициенту гидравлического сопротивления участка потока ζ_f по формуле :

$$h_f = \zeta_f \cdot \frac{\upsilon^2}{2g}$$

Средние скорости в сечениях потока определяются по вычисленному расходу Q и площадям сечений потока.

В уравнении (3) плоскость сравнения намечается в плоскости сечения 1-1. По условию задачи разность высот z_1 и z_2 не учитывается, давление P_1 - равно атмосферному, а скорость $v1 \approx O$. Отсюда величина вакуума :

Рвак = Ратм – Р2 согласно уравнению (3), равна:

$$P_{\text{\tiny BBK}} = (\alpha + \zeta_{f_{1-2}}) \cdot \frac{\rho \cdot v_{\text{\tiny BC}}^2}{2}$$

где

 ${\cal \zeta}_{f_{1-2}}$ - коэффициент гидравлического сопротивления, учитывается потери только в ${\cal \zeta}_{f_{1-2}}={\cal \zeta}_{\phi}$.

Для определения $P_{ea\kappa}$ необходимо найти среднюю скорость во всасывающем трубопроводе по формуле:

$$\upsilon_{ec} = \frac{Q}{\pi d_{ec}^2}$$

Для нахождения величины lpha необходимо определить режим движения по числу ${\rm Re}_{_{
m BC}}$

В уравнении (2) плоскость сравнения намечается по сечению 1'-1. При

этом $\vec{Z_1} = 0$ и $z_2 = z$. Скорости $\vec{V_1}$ и $\vec{V_2}$ - равны, т.к. площади сечений 1-1 и 2-2 одинаковы.

Потеря напора $h_{f_{1'-2'}}$ (на напорной линии) включает в себя потерю по длине трубы h_l и местную потерю в вентиле $h_{\mathfrak{g}}$

$$h_{f_{1'-2'}} = h_l + h_{\varepsilon}$$

Обе потери определяются по величине скоростного напора, равного $\dfrac{\upsilon_{\scriptscriptstyle H}^2}{2g}$

Тогда средняя скорость определим по формуле:

$$\upsilon_{_{H}} = \frac{Q}{\frac{\pi \cdot d_{_{H}}^{2}}{4}}$$

Согласно формулам Дарси и Вейсбаха - имеем:

$$h_{f_{1'-2'}} = \lambda \cdot \frac{l}{d_H} \cdot \frac{v^2}{2g} + \zeta_{\scriptscriptstyle B} \cdot \frac{v^2}{2g} = (\lambda \cdot \frac{l}{d} + \zeta_{\scriptscriptstyle B}) \frac{v^2}{2g},$$
 (Па), где

 λ - коэффициент гидравлического трения, определяемый в зависимости от режима течения.

При ламинарном движении (при числе Рейнольдса Re < 2300) - по формуле Стокса:

$$\lambda = \frac{64}{\text{Re}}$$

При турбулентном движении (при числе Рейнольдса Re >2300) - по формуле Блазиуса.

$$\lambda = \frac{0,3164}{\text{Re}^{0,25}}$$

Где число Рейнольдса равно $\operatorname{Re} = v \cdot d \cdot v^{-1}$

Решая уравнение (4), найдем разность давлений по формуле:

$$P_1^{'} - P_2^{'} = \rho \cdot g \cdot z + (\lambda \cdot \frac{l}{d_n} + \zeta_s) \cdot \frac{\rho \cdot^2}{2}$$
, (Па), где

Потеря напора в коллекторе h_k определим как местную потерю по формуле Вейсбаха (решение приближенное):

$$h_k = \zeta_k \frac{v^2}{2g}$$

Напор h_c , необходимый для создания струи, вытекающей на сопла с заданной скоростью v_c , равен :

$$h_c = \frac{1}{\varphi^2} \cdot \frac{v^2}{2g}$$
,где

Сравнивая величины h_k и h_c через давление, получим согласно уравнения, формулу для манометрического давления по формуле :

$$P_{_{\!M\!A\!H}} = \rho \cdot g \cdot z + (\lambda \cdot \frac{l}{d_n} + \zeta_{_{\!\mathit{B}}}) \cdot \frac{\rho \cdot {\upsilon_{_{\!\mathit{H}}}}^2}{2} + \zeta_{_{\!\mathit{K}}} \cdot \frac{\rho \cdot {\upsilon_{_{\!\mathit{H}}}}^2}{2} + \frac{1}{\varphi^2} \cdot \frac{\rho \cdot {\upsilon_{_{\!\mathit{C}}}}^2}{2},$$

Величину потребного напора H определим по формуле, а величина затрачиваемой насосом мощности N по формуле :

$$N = \frac{\rho \cdot g \cdot Q \cdot H}{\eta}$$