2. ПРАКТИЧЕСКАЯ ЧАСТЬ САМОСТОЯТЕЛЬНОЙ РАБОТЫ

Однородная по проницаемости и толщине пласта нефтяная залежь, имеющая в плане форму круга, окружена бесконечно простирающейся водоносной областью и разрабатывается при водонапорном режиме. Вытеснение нефти близко к равномерному поршневому. Залежь разрабатывается 3 кольцевыми рядами скважин, а также скважиной, расположенной в центре залежи. Ряды внешних скважин по мере обводнения выводятся из эксплуатации. Объемный коэффициент нефти принять равным 1. Коэффициент охвата пласта вытеснением принять равным 0,8. Известно, что на четвертом этапе залежь не разрабатывается.

Определить общие запасы нефти залежи, текущую нефтеотдачу к концу второго этапа разработки, конечную нефтеотдачу и продолжительность разработки залежи при данных, указанных в таблице 3 и в таблице 4.

Таблица 3 – Исходные данные для расчетной работы

	Параметры		Номер варианта				
№			1	2	3	4	5
п/п			11	12	13	14	15
			21	22	23	24	25
	Радиус начального контура нефтеносности R _н , м		6000	6100	6200	6300	6400
1			(+100)	(+100)	(+100)	(+100)	(+100)
			(+200)	(+200)	(+200)	(+200)	(+200)
2			4400	4400	4500	4600	4800
		R ₁ , M	(+100)	(+100)	(+100)	(+100)	(+100)
	Радиусы		(+200)	(+200)	(+200)	(+200)	(+200)
	эксплуатационных		3000	2900	3000	3000	3200
	рядов скважин	R ₂ , M	(+50)	(+50)	(+50)	(+50)	(+50)
			(+100)	(+100)	(+100)	(+100)	(+100)
		R 3, м	2600	2500	2400	2500	2800
3	Радиус скважины в рядах и в центре залежи rc, м		0,1	0,1	0,1	0,1	0,1
4	Расстояние между скважинами в рядах 2*σ, м		300	350	400	300	350
5	Толщина пласта h, м		7	8	9	10	11
6	Пористость пласта т, %		17	18	19	20	21
7	Насыщенность пласта связ.		0,3	0,29	0,28	0,27	0,26

	водой S _{CB} , д.ед.					
8	Дебит нефти одной скважины q, м ³ /сут	50	60	70	80	90
9	Коэфф. вытеснения нефти, д.ед.	0,6	0,61	0,62	0,63	0,64

Таблица 4 – Исходные данные для расчетной работы (продолжение)

	Параметры		Номер варианта					
№ п/п			6	7	8	9	10	
			16	17	18	19	20	
			26	27	28	29	30	
1	Радиус начального контура нефтеносности R _н , м		6000	6100	6200	6300	6400	
			(+100)	(+100)	(+100)	(+100)	(+100)	
			(+200)	(+200)	(+200)	(+200)	(+200)	
			4400	4500	4500	4600	4700	
		R ₁ , M	(+100)	(+100)	(+100)	(+100)	(+100)	
2	Радиусы		(+200)	(+200)	(+200)	(+200)	(+200)	
2	эксплуатационных		2900	3000	3000	3100	3200	
	рядов скважин	R ₂ , M	(+50)	(+50)	(+50)	(+50)	(+50)	
			(+100)	(+100)	(+100)	(+100)	(+100)	
		R 3, м	2500	2400	2500	2600	2700	
3	Радиус скважины в рядах и в		0,1	0,1	0,1	0,1	0,1	
	центре залежи гс, м	NA CONCINE						
4	Расстояние между скважинами в рядах 2*σ, м		400	300	350	400	300	
5	Толщина пласта h, м		12	13	7	8	9	
6	Пористость пласта т, %		22	17	18	19	20	
7	Насыщенность пласта связ. водой Scb, д.ед.		0,25	0,24	0,23	0,28	0,29	
8	Дебит нефти одной скважины q, м³/сут		40	50	60	70	80	
9	Коэфф. вытеснения д.ед.	нефти,	0,65	0,66	0,67	0,68	0,69	

Формулы, используемые при решении задачи:

1) Запасы нефти, извлекаемые на каждом этапе разработки:

$$V_{1} = \pi \cdot (R_{H}^{2} - R_{1}^{2}) \cdot h \cdot m \cdot (1 - S_{CB}) \cdot k_{sbim} \cdot k_{oxs}$$
(1)

$$V_{2} = \pi \cdot (R_{1}^{2} - R_{2}^{2}) \cdot h \cdot m \cdot (1 - S_{CB}) \cdot k_{sbim} \cdot k_{oxs}$$
(2)

$$V_{3} = \pi \cdot (R_{2}^{2} - R_{3}^{2}) \cdot h \cdot m \cdot (1 - S_{CB}) \cdot k_{sbim} \cdot k_{oxs}$$
(3)

$$V_4 = \pi \cdot (R_3^2 - r_c^2) \cdot h \cdot m \cdot (1 - S_{CB}) \cdot k_{\text{\tiny BMB}} \cdot k_{\text{\tiny OXG}}$$
(4)

где V_1- запасы нефти, извлекаемые на первом этапе разработки, м 3 ;

 V_2 – запасы нефти, извлекаемые на втором этапе разработки, м 3 ;

 V_3 – запасы нефти, извлекаемые на третьем этапе разработки, м 3 ;

 V_4 – запасы нефти, извлекаемые на четвертом этапе разработки, м 3 ;

 $R_{\mbox{\tiny H}}$ – радиус начального контура нефтеносности, м;

 R_1 – радиус первого эксплуатационного ряда скважин, м;

 R_2 – радиус второго эксплуатационного ряда скважин, м;

R₃ – радиус третьего эксплуатационного ряда скважин, м;

 r_{c} – радиус скважины, м;

h – толщина пласта, м;

т – пористость пласта, д.ед.;

S_{св} – насыщенность пласта связанной водой, д.ед.;

k_{выт} – коэффициент вытеснения нефти, д.ед.

2) Общие запасы нефти в залежи:

$$V_0 = \pi \cdot \left(R_H^2 - r_c^2\right) \cdot h \cdot m \cdot (1 - S_{CB}) \tag{5}$$

3) Текущая нефтеотдача к концу второго этапа разработки η_2 определяется отношением:

$$\eta_2 = \frac{V_1 + V_2}{V_0} \tag{6}$$

4) Суммарный дебит каждого ряда:

$$Q_i = q \cdot n_i = \frac{q \cdot 2 \cdot \pi \cdot R_i}{2 \cdot \sigma} \tag{7}$$

где i = 1,2,3;

q – дебит нефти одной скважины, M^3/c ;

R_i – радиус соответствующего эксплуатационного ряда скважин, м;

 $2*\sigma$ – расстояние между скважинами в рядах, м.

5) Суммарный дебит всех скважин по этапам разработки:

$$Q_{p1} = Q_1 + Q_2 + Q_3 + q \tag{8}$$

$$Q_{p2} = Q_2 + Q_3 + q$$
 (9)
$$Q_{p3} = Q_3 + q$$
 (10)

где Q_{p1} — суммарный дебит всех скважин на первом этапе разработки, m^3/c ; Q_{p2} — суммарный дебит всех скважин на втором этапе разработки, m^3/c ; Q_{p1} — суммарный дебит всех скважин на третьем этапе разработки, m^3/c .

6) Продолжительность этапов разработки t_i:

$$t_i = \frac{V_i}{Q_{pi}} \tag{11}$$

где i = 1, 2, 3.

7) Общая продолжительность разработки залежи $t_{\text{разр}}$:

$$t_{pasp} = \sum_{i=1}^{n=3} t_i$$
 (12)

8) Конечная нефтеотдача η определяется как отношение количества добытой нефти к концу разработки залежи к первоначальным ее запасам:

$$\eta = \frac{V_1 + V_2 + V_3}{V_0} \tag{13}$$