Расчет разбавления сточных вод в водном объекте

Цель работы. Оценка требуемой очистки сточных вод (СВ) которая позволяет сделать обоснованный выбор типа и мощности очистных сооружений, вариантов размещения оголовков выпуска (у берега или в стрежень) и их конструктивных особенностей.

Методика расчета

Промышленное предприятие через очистные сооружения сбрасывает сточные воды в водный объект (рисунок 1)

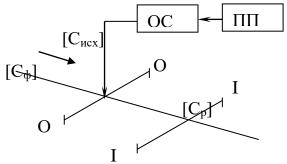


Рисунок 1 - Ситуационная схема для расчета условий сброса сточных вод:

ПП – промышленное предприятие;

ОС – очистные сооружения;

О-О – нулевой створ (сечение, в которое производится сброс сточных вод);

I-I — расчетный (контрольный) створ (сечение, начиная с которого воды водного объекта должны отвечать санитарным требованиям для установленного вида водопользования, то есть концентрации загрязняющих веществ с учетом фоновых конценраций не должны превышать установленные $\Pi Д K$);

 $C_{\text{исх}}$ - концентрация загрязняющих веществ в сточной воде, подлежащей сбросу, мг/л;

 C_{ϕ} - фоновая концентрация загрязняющих веществ в воде водного объекта, мг/л;

 C_p - концентрация загрязняющих веществ в расчетном створе, мг/л.

Для водоемов хозяйственно-питьевого и культурно-бытового вида водопользования и рыбохозяйственного вида водопользования расчетный (контрольный) створ располагается в 500 м от нулевого створа по фарватеру. В случае если фоновая концентрация C_{φ} в водном объекте превышает установленный ПДК или сброс в водный объект осуществляется на территории города, расчетный (контрольный) створ устанавливается в месте выпуска сточных вод, а нормативы качества воды водного объекта применяются к сточной воде.

Участок водоема от места выпуска стоков условно делят на зоны:

- 1) зона начального разбавления, в которой разбавление достигается на счет разности скорости истечения стоков (v_c) и течения воды в водном объекте (v_n);
- 2) основного разбавления, в которой разбавления стоков идет за счет турбулентной диффузии в воде водного объекта;
 - 3) зона самоочищения, которая в данной расчетной работе не учитывается.

В простом случае общая красность разбавления может быть также представлена следующим образом:

$$n = \frac{q + Q}{q}$$

где Q - минимальный расход воды в сечении водного объекта, m^3/c , q - максимальный расход сточных вод, m^3/c .

Общая кратность разбавления сточных вод в водном объекте определяется, как произведение кратности начального разбавления $n_{\rm H}$ и кратности основного разбавления $n_{\rm O}$ по формуле:

$$n = n_{\scriptscriptstyle \rm H} \cdot n_{\scriptscriptstyle \rm O}$$

Общая кратность разбавления может быть выражена следующим отношением:

$$n = \frac{C_{\text{\tiny MCX}} - C_{\Phi}}{C_{\text{\tiny p}} - C_{\Phi}}$$

Кратность начального разбавления $n_{\rm H}$ рассчитывается по нормативному методу Лапшева по формуле:

$$n_{\rm H} = \frac{0.248}{1 - m} d_{\rm d}^2 \left(\sqrt{m^2 + 8.1 \frac{1 - m}{d^2}} - m \right)$$

Безразмерный коэффициент m рассчитывается по формуле:

$$m = \sqrt{\frac{\rho_{\pi}}{\rho_{c}} \cdot \frac{v_{\pi}^{2}}{v_{c}^{2}}}$$

где ρ_{π} и ρ_{c} - плотности воды в водном объекте и сточной воды, принимаемые обычно равными единице.

Величина d_d рассчитывается по формуле:

$$d_d = \sqrt{8.1/\left(\frac{0.01 \cdot (1-m)}{0.92} + \frac{0.2m}{0.96}\right)}$$

Диаметр загрязненного пятна d в граничном слое начального разбавления рассчитывается по формуле:

$$d = d_d \cdot d_o$$

Диаметр выпуска рассчитывается по формуле:

$$d_o = \sqrt{\frac{4q}{\pi \cdot \nu_c \cdot N_0}} \cdot$$

где N_0 - количество оголовков выпуска, q- расход сточных вод, ${\rm M}^3/c$.

Если расчетная кратность начального разбавления $n_{\scriptscriptstyle H}$ окажется меньше 1, то для дальнейших вычислений следует принять $n_{\scriptscriptstyle H}=1$

Кратность основного разбавления $n_{\rm o}$ рассчитывается по нормативному методу Фролова-Родзиллера по формуле:

$$n_{\rm o} = \frac{{\rm q} + \gamma {\rm Q}}{{\rm q}} \cdot$$

где q — максимальный расход сточных вод, m^3/c ; Q — минимальный расход воды в водном объекте, m^3/c ; γ - коэффициент смешения.

Коэффициент смешения у показывает, какая часть расхода воды в водном объекте смешивается со сточными водами в максимально-загрязненной струе расчетного створа и рассчитывается по формуле:

$$\gamma = \frac{1 - \beta}{1 + \frac{\beta Q}{q_{H}}}$$

где

$$\beta = e^{-\alpha \cdot \sqrt[3]{L_{\phi}}}$$

где е — основание натурального логарифма; α - коэффициент, учитывающий гидрологические особенности водного объекта; L_{Φ} - расстояние от нулевого до расчетного

створа по фарватеру, м; $q_{\scriptscriptstyle \rm H}$ - расход смеси сточных вод и воды водного объекта в пограничном сечении зоны начального разбавления, ${\rm M}^3/{\rm c}$.

 $q_{\rm H}$ рассчитывается по формуле:

$$q_{\scriptscriptstyle \mathrm{H}} = rac{q}{n_{\scriptscriptstyle \mathrm{H}}}$$

 α рассчитывается по формуле:

$$\alpha = \varepsilon \cdot \varphi \cdot \sqrt[3]{\frac{D}{q}}$$

где ε - коэффициент, зависящий от способа выпуска сточных вод: $\varepsilon=1$ при выпуске у берега, $\varepsilon = 1.5$ при выпуске в стрежень (линию наибольшей скорости течения) водного объекта, φ - коэффициент извилистости русла водного объекта рассматриваемом участке, D - коэффициент турбулентной диффузии.

 φ рассчитывается по формуле:

$$\varphi = \frac{L_{\Phi}}{L_{\pi}}$$

где $L_{\rm n}$ - расстояние между нулевым и расчетным створом, отложенное по прямой, м.

Коэффициент турбулентной диффузии D может быть рассчитан по формуле Караушева:

$$D = \frac{gH_{\rm cp}v_{\rm n}}{MC}$$

где g — ускорение свободного падения, $H_{\rm cp}$ - средняя глубина водного объекта на рассматриваемом участке, м, С - коэффициент Шези, М - параметр, зависящий от С и равный М=0.7С+6

Коэффициент Шези С может быть определен по одной из трех формул.

При наличии данных о гранулометрическом составе донных отложений рассчитывается по формуле Штриклера-Маннинга:

$$C = 33(H_{\rm cp}/d_{\rm s})$$

где $d_{\text{\tiny 9}}$ - эффективный диаметр донных отложений.

При наличии данных о коэффициенте шероховатости ложа водного объекта $n_{\rm m}$ применяется формула Павловского:

$$C = \frac{H_{\rm cp}^{1.6}}{n_{\rm ur}}$$

При наличии данных об уклоне водной поверхности применяется формула: $\mathsf{C} = \frac{v_{\scriptscriptstyle \Pi}}{\sqrt{H_{\rm cp} \cdot i}}$

$$C = \frac{v_{\rm m}}{\sqrt{H_{\rm cp} \cdot i}}$$

Где і – уклон водной поверхности, %

Фактический сброс загрязняющих веществ ФС (г/с) и определяется по формуле:

$$\Phi C = q \cdot C_{\text{MCX}}$$

При условии невыполнения нормативов качества воды в расчетном створе водного объекта рассчитывается требуемая степень очистки сточных вод Э0 определяется по формуле:

$$\mathfrak{I}_0 = \frac{C_{\mathrm{p}} - C_{\Pi \mathrm{ДK}} + C_{\mathrm{\phi}}}{C_{\mathrm{p}}} \cdot 100\%$$

При проектировании выпусков сточных вод рассчитывается нормативнодопустимый сброс НДС (устаревшее название – предельно-допустимый сброс ПДС) (г/с), который показывает, какая масса загрязняющего вещества может быть сброшена в единицу времени в водный объект при условии соблюдения нормативов качества воды в расчетном створе водного объекта, рассчитывается по формуле:

$$HДC = q \cdot C_{HДC}$$

где $C_{HДC}$ - допустимая концентрация загрязняющего вещества в сточной воде (мг/дм³), определяется по формуле:

$$C_{HJIC} = n \cdot (C_{\Pi JIK} - C_{\Phi}) + C_{\Phi}$$

Задание на расчет

По исходным данным (таблица 1) рассчитать концентрации заданного загрязняющего вещества $C_{\rm p}$ в расчетном створе водного объекта с учетом кратности начального разбавления $n_{\rm h}$ и основного разбавления $n_{\rm o}$ для способов выпуска сточных вод у берега и в стрежень (при условии сосредоточенного выпуска). Сравнить два рассмотренных способа выпуска между собой, объяснить различие полученных концентраций с точки зрения механизмов разбавления. Рассчитать фактический сброс вещества Φ С в водный объект. Сравнить полученное значение концентрации вещества $C_{\rm p}$ с учетом фоновой концентрации $C_{\rm \phi}$ с предельно-допустимой концентрацией для заданного вида водопользования (ПДК для хозяйственно-питьевого и культурно-бытового вида водопользования). При нарушении норматива качества воды произвести расчет требуемой степени очистки сточных вод Θ 0. Используя открытые источники информации произвести поиск метода, способа или конструкции аппарата, позволяющего производить очистку сточных вод от заданного загрязняющего вещества при заданном расходе сточных вод Θ 1. Рассчитать нормативно-допустимый сброс НДС по начальным условиях выпуска сточных вод.

Таблица 1 Исходные данные к расчету разбавления сточных вод в водотоке

$\mathcal{N}_{\underline{0}}$	Загрязняющ	q,	$Q, M^3/c$	v_c ,	V_{Π} ,	$H_{\rm cp}$, м	L_{Π} , м	$n_{\scriptscriptstyle m III}$	C_{ucx} ,	C_{ϕ} , мг/л	C_{Π ДК $}$,
	ее вещество	M^3/c		м/с	м/с	_			мг/л	_	мг/л
1.	Хром	4,9	190	2,8	0,50	3,3	450	0,05	100	0,11	0,5
	Уксусная	2	184	4,1	0,45	4,4	382	0,025	140	0,012	0,05
2.	кислота										
	Сульфат	1,7	106	3,3	0,45	3,8	496	0,025	150	0,21	1
3.	аммония		100		0.40			0.00	100	0.04	
4.	Железо	2,2	103	3,4	0,40	3,9	415	0,03	100	0,04	0,3
5.	Пропилен	3	147	2,9	0,55	4,4	434	0,1	80	0,015	0,1
6.	Алюминий	3,1	172	4,2	0,50	4,3	396	0,03	120	0,009	0,5
7.	Медь	1,8	112	2,5	0,35	3	351	0,025	150	0,12	1
8.	Сероуглерод	1,2	109	3,4	0,40	3,6	458	0,025	150	0,0002	0,005
9.	Бензол	3,7	156	3,1	0,55	3,6	487	0,1	100	0,09	0,5
10.	Глицерин	1,5	135	2,7	0,45	4,2	442	0,067	120	0,007	0,1
11.	Цинк	3,5	130	2,7	0,45	3,2	390	0,04	160	0,16	1
12.	Пропилен	4	135	3,3	0,45	3,7	469	0,133	100	0,003	0,01
13.	Железо	1	130	4,5	0,35	4,0	426	0,067	100	0,04	0,3
14.	Хром	2,8	163	4,3	0,45	4,2	372	0,04	200	0,005	0,5
15.	Цинк	4,1	151	3,0	0,60	4,1	401	0,05	150	0,16	1
16.	Сероуглерод	2	154	2,9	0,55	3,4	490	0,067	80	1,2	4,2
	Нитраты по	5	136	4,0	0,40	4,5	367	0,133	500	0,023	0,1
17.	NO2										
18.	Медь	2,5	123	3,1	0,55	3,9	425	0,08	120	0,03	1
19.	Толуол	3,5	87	2,5	0,35	4,0	420	0,04	100	0,0001	0,001
20.	Железо	2,1	96	2,6	0,40	3,1	378	0,03	120	0,1	0,3
	Аммиак (по	5,5	134	3,2	0,50	3,7	456	0,133	350	0,34	2
21.	азоту)										
	Спирт	2,3	139	2,8	0,50	4,3	491	0,08	300	0,008	0,1
22.	метиловый,										
23.	Медь	4,9	115	2,6	0,40	4,1	467	0,05	110	0,27	1

24.	Ацетон	3	143	3,0	0,60	3,5	438	0,08	200	0,003	0,05
25.	Ацетон	3,1	152	3,2	0,50	3,8	440	0,1	300	0,01	0,05