

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)»

Кафедра инженерного проектирования

Е.Н. Булина, А.В. Ермолаев, Е.А. Пономаренко

ОФОРМЛЕНИЕ ПОЯСНИТЕЛЬНОЙ ЗАПИСКИ ПРИ ВЫПОЛНЕНИИ ЧЕРТЕЖА ХИМИЧЕСКОГО АППАРАТА НА СТАДИИ ТЕХНИЧЕСКОГО ПРОЕКТА

Учебное пособие

Санкт-Петербург 2018

УДК 66.02

Булина, Е.Н., Оформление пояснительной записки при выполнении чертежа химического аппарата на стадии технического проекта: учебное пособие / Е.Н Булина, А.В. Ермолаев, Е.А. Пономаренко. – СПб.: СПбГТИ (ТУ), 2018. – 95 с.

Данное учебное пособие по выполнению и подготовке к защите курсовых работ предназначено для студентов-технологов. Учебное пособие содержит следующие разделы: общие требования, этапы и структура курсовой работы, составление плана курсовой работы, работа над содержанием, определение размеров составных частей аппарата, определение массы аппарата, расчет номинального объема аппарата, заключение.

Задача по определение размеров составных частей аппарата сводится к выбору размеров частей и деталей аппарата: толщины, основных геометрических размеров элементов и т.д. Начальными данными являются давление в аппарате и его внутренний диаметр.

Учебное пособие предназначено для студентов 1-5 факультетов очного отделения, изучающих дисциплину «Инженерная графика» по следующим направлениям подготовки бакалавриата: 22.03.01, 19.03.01, 20.03.01, 09.03.01.

Учебное пособие может быть полезно студентам заочного отделения.

Рис. 48, библиогр. назв.4, табл. 26.

Рецензенты:

1 Военный инженерно-технический институт в составе Военной академии материально-технического обеспечения имени генерала армии А.Н. Хрулёва, А.В.Александрин, канд. архитектуры, профессор;

2 А.Ю. Иваненко, канд. техн. наук, доцент кафедры оптимизации химической и биотехнологической аппаратуры СПбГТИ (ТУ).

Издание подготовлено в рамках выполнения государственного задания по оказанию образовательных услуг Минобрнауки России.

Утверждено на заседании учебно-методической комиссии механического факультета 12.01.2018 г.

Рекомендовано к изданию РИС СПбГТИ (ТУ)

Введение

Целью курсовой работы по дисциплине «Инженерная графика» (ИГ) является закрепление теоретических знаний у студентов, выработка умения составлять и оформлять технологическую и конструкторскую документацию химических аппаратов.

Условием качественного выполнения работы является самостоятельная и творческая работа студентов с использованием специальной и справочной литературы.

Курс инженерной графики призван научить студентов понимать основные принципы работы аппаратов, научить методам расчета аппаратов.

Одним из наиболее важных этапов в изучении курса является выполнение курсовой работы, темы которой сформулированы таким образом, чтобы студенты могли ознакомиться с методами расчета и проектирования аппаратов, наиболее распространенных в химической и нефтехимической промышленности.

1 Структура пояснительной записки

Пояснительная записка к курсовой работе должна включать следующие структурные элементы:

- титульный лист;
- техническое задание;
- содержание;
- перечень условных обозначений, символов, терминов;
- введение;
- теоретические основы процесса (физическая сущность);
- описание принципа работы данного типа аппарата;
- определение размеров составных частей аппарата (выбор размеров обечаек, днищ, крышек, штуцеров, фланцев, опор аппарата);
- расчет полной массы аппарата (включающий в себя расчет массы всех элементов аппарата)
 - расчет номинального объема аппарата);
 - заключение;
 - список использованных источников.

1.1 Требования по оформлению пояснительной записки

Оформление текста пояснительной записки производится по ГОСТ 2.105-95. Общие правила к текстовым документам.

1.1.1 Требования по оформлению разделов и подразделов

Текст пояснительной записки разделяют на разделы и подразделы.

Разделы должны иметь порядковые номера в пределах всего документа (пояснительной записки), обозначенные арабскими цифрами без точки и записанные с абзацного отступа.

Подразделы должны иметь нумерацию в пределах каждого раздела. Номер подраздела состоит из номеров раздела и подраздела, разделенных точкой. В конце номера подраздела точка не ставится.

Разделы, как и подразделы, могут состоять из одного или нескольких пунктов. В конце номера пункта точка не ставится, например:

1 Типы и основные размеры (раздел)

- 1.1 Габаритные (подраздел)
- 1.2 Присоединительные (подраздел)

2 Технические требования. Методы испытаний

- 2.1 Покраска (подраздел)
- 2.2 Испытания (подраздел)

Разделы, подразделы должны иметь заголовки. Заголовки должны четко и кратко отражать содержание разделов, подразделов. Заголовки следует печатать с прописной буквы без точки в конце, не подчеркивая. Переносы слов в заголовках не допускаются. Если заголовок состоит из двух предложений, их разделяют точкой.

Разделы: Введение, Заключение и Список литературы не имеют порядкового номера.

Каждый раздел текстового документа рекомендуется начинать с нового листа (страницы).

В тексте пояснительной записки, за исключением формул, таблиц и рисунков, не допускается:

- применять математический знак минус (—) перед отрицательными значениями величин (следует писать слово «минус»);
- применять знак (\emptyset) для обозначения диаметра (следует писать слово «диаметр»);
- применять без числовых значений математические знаки, например > (больше), < (меньше), = (равно), \geq (больше или равно), \leq (меньше или равно), \neq (не равно), а также знаки \mathbb{N}_{2} (номер), % (процент).

В пояснительной записке следует применять стандартизованные единицы физических величин, их наименования и обозначения в соответствии с ГОСТ 8.417. (Единицы системы СИ).

В тексте документа числовые значения величин с обозначением единиц физических величин и единиц счета следует писать цифрами, а числа без обозначения единиц физических величин и единиц счета от единицы до девяти — словами.

Примеры.

- 1 Провести испытания пяти труб, каждая длиной 5 м.
- 2 Отобрать 15 труб для испытаний на давление.

1.1.2 Требования по оформлению формул

В формулах в качестве символов следует применять обозначения, установленные соответствующими государственными стандартами.

Пояснения символов и числовых коэффициентов, входящих в формулу, если они не пояснены ранее в тексте, должны быть приведены непосредственно под формулой.

Пояснения каждого символа следует давать с новой строки в той последовательности, в которой символы приведены в формуле.

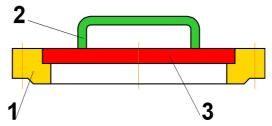
Первая строка пояснения должна начинаться со слова «где» без двоеточия после него.

Пример — Плотность каждого образца ρ , кг/м³, вычисляют по формуле

$$\mathbf{\rho} = \mathbf{m/V} \,, \tag{1}$$

где m - масса образца, кг; V- объем образца, M^3 .

Формулы, следующие одна за другой и не разделенные текстом, разделяют запятой. Переносить формулы на следующую строку допускается только на знаках выполняемых операций, причем знак в начале следующей строки повторяют. При переносе формулы на знаке умножения применяют знак (x).


Формулы, за исключением формул, помещаемых в приложении, должны нумероваться сквозной нумерацией арабскими цифрами, которые записывают на уровне формулы справа в круглых скобках.

1.1.3 Требования по оформлению иллюстраций (рисунков)

Количество иллюстраций должно быть достаточным для пояснения излагаемого текста. Иллюстрации могут быть расположены как по тексту документа (возможно ближе к соответствующим частям текста), так и в конце его. Иллюстрации должны быть выполнены в соответствии с требованиями стандартов ЕСКД и СПДС. Иллюстрации следует нумеровать арабскими цифрами сквозной нумерацией. Если рисунок один, то он обозначается.

Допускается не нумеровать мелкие иллюстрации (мелкие рисунки), размещенные непосредственно в тексте и на которые в дальнейшем нет ссылок.

Если в тексте документа имеется иллюстрация, на которой изображены составные части изделия, то на этой иллюстрации должны быть указаны номера позиций этих составных частей в пределах данной иллюстрации, которые располагают в возрастающем порядке, за исключением повторяющихся позиций. Пример обозначения иллюстрации на рисунке 1.

1- фланец, 2- рукоятка, 3- плоское днище. Рисунок 1- Крышка люка

1.1.4 Требования по оформлению таблиц

Таблицы применяют для большей наглядности и удобства сравнения показателей.

Таблица 1 - Основные размеры и масса обечаек цилиндрических

Внутренний диаметр	ний диаметр Давление в аппарате р, Толщина		Масса погонного метра		
обечайки Дв, мм	МПа	обечайки s, мм	обечайки Моб, кг		
400	0,6	6	60		
400	1,0	8	81		

Название таблицы, при его наличии, должно отражать ее содержание, быть точным, кратким. Название следует помещать над таблицей. При переносе части таблицы на ту же или другие страницы название помещают только над первой частью таблицы.

Слово «Таблица» указывают один раз слева над первой частью таблицы, над другими частями пишут слова «Продолжение таблицы» с указанием номера (обозначения). Пример обозначения приведен ниже.

Продолжение таблицы 1

	•		
Внутренний	Давление в	Толщина	Масса погонного
диаметр обечайки	аппарате р, МПа	стенки	метра обечайки
D в, мм		обечайки s, мм	Моб, кг
400	1,6	8	81
400	2,5	10	101

2 Титульный лист

Титульный лист содержит сведения согласно Приложению А и оформляется на бланке формата А4.

Перенос слов на титульном листе не допускается. Точка в конце заголовка не ставится (Приложение А). Курсовой работе (документам) присваивается обозначение. Оно проставляется на титульном листе, листах пояснительной записки и на всех чертежах графической части работы, имеющих основные надписи. Обозначение записывается по типу:

КР 18.03.01,12.000 ВО; КП 171200.12.000 ПЗ,

где КР – вид учебного документа (курсовая работа);

КП – вид учебного документа (курсовой проект);

18.03.01 – шифр специальности;

12 – вариант задания курсовой работы;

000 –цифровая группа;

ВО – вид общий;

ПЗ – пояснительная записка.

3 Техническое задание

Техническое задание содержит сведения согласно Приложению А и оформляется на бланке формата А4.

Техническое задание помещается после титульного листа и включается в общую нумерацию листов пояснительной записки.

4 Содержание

Содержание состоит из последовательно перечисленных наименований разделов, подразделов и приложений с указанием номера страницы, на которой они помещены.

Слово «Содержание» записывается в виде заголовка симметрично тексту с прописной буквы. Наименования, включенные в содержание, записывают строчными буквами, первая буква — прописная (с абзаца). Содержание включают в общую нумерацию листов пояснительной записки и размещают после задания.

5 Введение

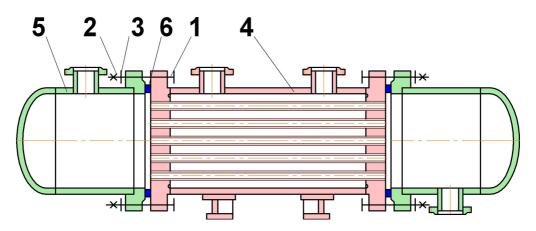
Введение пояснительной записки содержит общие сведения, кратко характеризующие состояние вопроса и актуальность разработки темы работы.

Введение должно занимать не более одной страницы машинописного текста.

6 Теоретические основы процесса

Прежде чем приступить к выполнению курсовой работы, необходимо рассмотреть и раскрыть физическую сущность протекающего процесса (теплообмен, выпаривание, абсорбция, ректификация, сушка, экстракция и др.). Необходимо описать условия протекания и движущую силу процесса.

7 Определение размеров составных частей аппарата


Задача этого раздела сводится к определению [1,2] основных размеров аппарата, обеспечивающих его прочность: толщины стенок, крышек, днищ, люков, опор, толщины трубных решеток теплообменников и фланцев и т.д. Необходимо обязательно учитывать при этом условия эксплуатации данного аппарата (давление, температуру и т.п.). Все выбранные элементы (включая размеры) аппарата приводятся в этом разделе с необходимыми рисунками и пояснениями.

8 Расчет массы

8.1 Расчет массы аппарата теплообменного горизонтального, работающего под избыточным давлением

Расчет массы аппарата теплообменного горизонтального, работающего под избыточным давлением, необходимо выполнить согласно схеме аппарата представленной на рисунке 2, при этом расчет отдельных элементов необходимо выполнить [3,4] в последовательности заполнения таблицы перечня оборудования, отраженной на рисунке 3. В первую очередь считается масса покупных изделий (позиции 1,2,3), затем вновь разработанных (4,5,6).

Результаты расчета затем отражаются на чертеже общего вида аппарата.

1 -болт, 2 -гайка, 3 -шайба, 4 -корпус, 5 -крышка, 6 -прокладка.

Рисунок 2 — Схема основных элементов для расчета массы горизонтального теплообменного аппарата

8.1.1 Расчет массы болтов (позиция 1)

Масса одного болта $M_{\rm 5}$ определяется из таблицы 18. Для болта $M_{\rm 20}$ при длине 100 мм она равна 0,3147 кг.

Искомая величина получена, заносим её в графу масса таблицы перечня оборудования рисунок 3.

Масса всех болтов (n), в нашем примере, равна:

$$M_{\Sigma\delta} = M_{\delta} \times n = 0.3147 \times 40 = 12.59 \text{ K}\Gamma.$$
 (2)

В случае шпилечного соединения фланцев масса одной шпильки $M_{\rm m}$ определяется из таблицы 19.

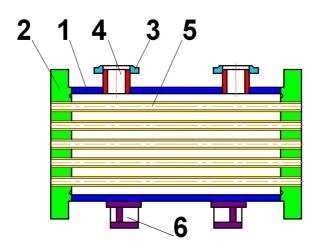
Поз.	Обозначение	Наименование	Кол.	Масса	Материал	Доп. указ.
		Заимствованные изделия				
		Покупные изделия				
1		Болт M20x100.58		2.20		
2		ГОСТ 7798-70 Гайка М20 ГОСТ5915-70	<i>40</i> <i>40</i>	<i>0,32</i> <i>0,07</i>		
3		<u> Шайба 20 ГОСТ11371-78</u>	40	0,02		
		Вновь разрабатываемые изделия				
4	101.01.001.B0	Корпус	1	388		
<i>5</i>	101.02.002.B0 101.00.001	Крышка Прокладка	2	54 0.07		

Рисунок 3 – Таблица перечня оборудования

8.1.2 Расчет массы гаек (позиция 2 на рисунке 1)

Масса одного гайки M_Γ определяется из таблицы 20. Она равна 0,072 кг. Масса всех (n) гаек равна:

$$M_{\Sigma\Gamma} = M_{\Gamma} \times n = 0.072 \times 40 = 2.28 \text{ K}\Gamma.$$
 (3)


8.1.3 Расчет массы шайб (позиция 3 на рисунке 1)

Масса одной шайбы $M_{\rm m}$ определяется из таблицы 21. Она равна 0,017 кг. Масса всех (n) шайб равна:

$$M_{\Sigma_{III}} = M_{III} \times n = 0.017 \times 40 = 0.68 \text{ Kg}.$$
 (4)

8.1.4 Расчет массы корпуса (позиция 4 на рисунке 1)

Расчет массы корпуса необходимо выполнить согласно схеме аппарата, представленной на рисунке 4. Масса каждого элемента рассчитывается отдельно. Количество элементов корпуса 6.

1- обечайка, 2- трубная решетка, 3 — фланец d_y = 125мм, 4 — труба, 5 — труба, 6 — опора горизонтальная Рисунок 4 — Элементы корпуса

8.1.4.1 Расчет массы цилиндрической обечайки

Масса погонного метра обечайки определяется из таблицы 2. Она равна для обечайки D_{B} = 0,4 м и толщиной S= 0,008 м $M_{\text{o}6}$ =81 кг. Длина обечайки рассчитываемого аппарата равна L_{o} = 1,2м. Масса обечайки равна:

$$M_o = L_o \times M_{oo} = 1,2 \times 81 = 97,2 \text{ Kg}.$$
 (5)

В обечайке просверлены два отверстия для труб патрубков диаметром $d_{\rm H} = 0{,}133$ м. Масса металла отверстий определяется как:

$$M_{o\phi} = 0.25\pi d_H^2 S^x \rho^x n,$$
 (6)

где $M_{o\varphi}$ – масса металла отверстий, кг;

 ρ – здесь и далее плотность металла равная 7800 кг/м³;

n – количество отверстий.

$$M_{\text{od}} = 0.25\pi \, d_{\text{H}}^2 S^{\text{x}} \rho^{\text{x}} n = 0.25 \, \text{x} \, \pi^{\text{x}} \, 0.133^2 \, \text{x} \, 0.008 \, \text{x} \, 7800 \, \text{x} \, 2 = 1.71 \, \text{kg}.$$
 (7)

Масса обечайки равна:

$$M_{op} = M_o - M_{o\phi} = 97.2 - 1.71 = 95.39 \text{ K}\Gamma.$$
 (8)

8.1.4.2 Расчет массы трубной решетки

Масса одной трубной решетки определяется по формуле:

$$M_{Tp} = 0.25\pi (h \times D_{\phi}^2 + S(D_B + 2S)^2 - n_1 \times d_{\delta\phi}^2 \times h - n_2 \times d_{Tp}^2 (h + S)) \times \rho, \quad (9)$$

где $M_{\text{тр}}$ – масса трубной решетки, кг;

h – толщина трубной решетки, м;

 D_{φ} – диаметр трубной решетки, м;

S – толщина обечайки, м;

n₁ - количество отверстий под крепежные болты;

n₂ – количество отверстий под трубы;

 $d_{\text{тр}}$ – диаметр трубы (0,025 м);

 $D_{\rm B}$ – внутренний диаметр аппарата, м.

Для данного примера масса трубной решетки

$$M_{\text{Tp}} = 0.25\pi (h \times D_{\phi}^{2} + S(D_{\text{B}} + 2S)^{2} - n_{1} \times d_{\delta\phi}^{2} \times h - n_{2} \times d_{\text{Tp}}^{2} (h + S)) \times \rho = 0.25\pi (0.03\times0.535^{2} + 0.008(0.535 + 2\times0.008)^{2} - 20\times0.023^{2}\times0.03 - 91\times0.025^{2}(0.03 + 0.008)\times7800 = 52 \text{ Kg.}$$
(10)

Масса $M_{\Sigma TP}$ двух трубных решеток равна:

$$M_{\Sigma Tp} = 2 \times M_{Tp} = 2 \times 52 = 104 \text{ K}\Gamma.$$
 (11)

8.1.4.3 Расчет массы фланца

Масса одного фланца M_{φ} (d_y =125мм) определяется из таблицы 16. Она равна 3,88 кг. Масса двух фланцев равна:

$$M_{\Sigma \phi} = 2x M_{\phi} = 2x3,38 = 6,76 \text{ kg}.$$
 (12)

8.1.4.4 Расчет массы трубы патрубка (позиция 4 рисунок4)

Масса одной трубы патрубка (d_y =125 мм) определяется из таблицы 14. Она равна: ($M_{\text{пм}}$ =18,79 кг масса одного погонного метра), длина трубы равна: $L_{\text{тп}}$ = 0,160 м. Масса трубы патрубка равна:

$$M_{\text{TII}} = M_{\text{IIM}} \times L_{\text{TII}} = 18,79 \times 0,160 = 3,01 \text{ Kg}.$$
 (13)

Масса двух труб равна:

$$M_{\Sigma T\Pi} = 2x M_{T\Phi} = 2x3,01 = 6,02 \text{ K}\Gamma.$$
 (14)

8.1.4.5 Расчет массы труб трубной решетки

Масса одной трубы трубной решетки определяется из таблицы 14. Она при $M_{\text{пм}}$ =1,39 кг (масса одного погонного метра) и длине трубы $L_{\text{тр}}$ =1,2 м равна:

$$M_{Tp} = M_{IIM} \times L_{Tp} = 1.39 \times 1.2 = 1.67 \text{ K}\Gamma.$$
 (15)

Масса всех (n) труб (n=91) равна:

$$M_{\Sigma TTP} = 91 \text{x } 1,67 = 152,0 \text{ kg}.$$
 (16)

8.1.4.6 Расчет массы опоры нижней (седловой) горизонтального аппарата

При расчете массы опоры используется схема, данная на рисунке 5.

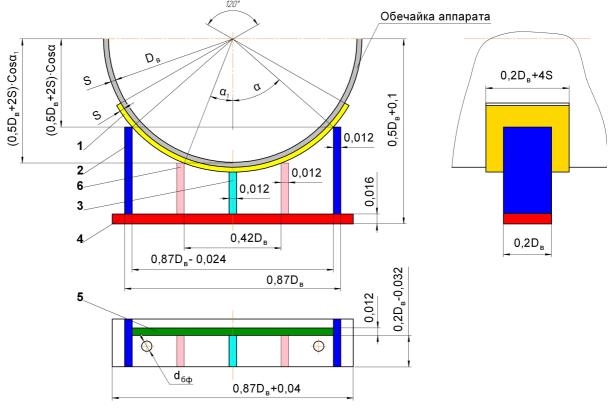


Рисунок 5 – Схема для расчета массы опоры горизонтальной

Масса одной опоры определяется по сумме массы деталей позиция 1-6:

Все размеры в метрах

$$M_{1} = \pi \rho (0.2D_{B} + 4S)^{x} (D_{B} + 3S)^{x} S/3 =$$

$$= 3.14^{x} 7800(0.2^{x}0.4 + 4^{x}0.008)^{x} (0.4 + 3^{x}0.008)^{x} 0.008/3 = 3.10 \text{ K}\text{T}.$$

$$M_{2} = \rho D_{B}(0.5D_{B}(1 - \cos\alpha) - 2S\cos\alpha + 0.084)^{x} 0.0024 =$$
(17)

$$=7800^{x}0,4^{x}(0,5^{x}0,4^{x}(1-0,6626)-2^{x}0,008^{x}0,6626+0,084)^{x}0,0024=1,95 \text{ kg}. \tag{18}$$

$$M_3 = \rho(0.084-2S) \times (0.2D_B - 0.032) \times 0.012 =$$

$$= 7800 \times (0.084 - 2 \times 0.008) \times (0.2 \times 0.4 - 0.032) \times 0.012 = 0.31 \text{ Kg}.$$
 (19)

$$M_4 = \rho^x((0.87D_B + 0.04)^x 0.2^x D_B^x 0.016 - 2^x 0.008^x \pi^x d_{\delta\phi}^2) =$$

$$=7800^{x}(0.87^{x}0.4+0.04)^{x}0.2^{x}0.4^{x}0.016-2^{x}0.008^{x}\pi^{x}0.028^{2}=3.57 \text{ kg}$$
(20)

$$M_5 = 0.012 \rho (D_B(0.5D_B(1-\cos\alpha)+0.084) (0.87D_B-0.024) -$$

$$(0.25\pi(D_B + 4S)^2 \times \alpha/180^0 - 0.25D_BCOS\alpha(0.87D_B - 0.024)) =$$

$$=0.012^{x}7800^{x}0.4^{x}(0.5^{x}0.4^{x}(1-0.6626)+0.084)^{x}(0.87^{x}0.4-0.024)-(0.25^{x}\pi^{2})^{2}$$

$$(0.4+4\times0.008)^2\times48.5^0/180^0-0.25\times0.4\times COS48.5^0\times(0.87\times0.4-0.024))=1.03 \text{ K}\text{ }\Gamma.$$
 (21)

Для аппарата диаметром более 2000 мм рассчитывается $M_{\mathbf{6}}$

$$M_6 = 0.012 \rho(0.2D_B - 0.032)(0.5D_B(1 - \cos\alpha_1) - 2S\cos\alpha_1 + 0.084)$$
 (22)

$$M_{\text{OUT}} = M_1 + 2M_2 + M_3 + M_4 + M_5 = 3,10 + 2^{x}1,95 + 0,31 + 3,57 + 1,03 = 11,91 \text{ K}\Gamma. \tag{23}$$

где $M_{\text{опг}}$ – масса одной опоры, кг;

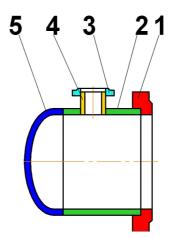
D_в- внутренний диаметр корпуса, м;

S – толщина обечайки, м;

 α и α_1 – угол (таблица 25), град;

 $d_{\delta \Phi}$ – диаметр отверстий под фундаментные болты, м.

Масса двух опор равна:


$$M_{\Sigma \text{OHF}} = 2^{x} M_{\text{OHF}} = 2^{x} 11,91 = 23,82 \text{ Kg}.$$
 (24)

8.1.4.7 Общая масса корпуса (позиция 4)

$$M_{\text{кор}} = M_{\text{ор}} + M_{\text{тр}} + M_{\Phi} + M_{\text{тф}} + M_{\text{ттр}} + M_{\text{опг}} = 95,39 + 104 + 6,76 + 6,02 + 152,0 + 23,82 = 387,99 \text{ кг}.$$
(25)

8.1.5 Расчет массы крышки (позиция 5)

Расчет массы крышки необходимо выполнить согласно схеме аппарата представленной на рисунке 6. Масса каждого элемента рассчитывается отдельно. Количество элементов крышки - 5. Количество крышек в аппарате n=2.

1-фланец корпуса, 2-обечайка, 3 – фланец (d_y =100мм), 4 – труба фланца, 5 – днище. Рисунок 6 – Элементы крышки корпуса

8.1.5.1 Расчет массы фланца крышки

Масса M_{ϕ} определяется из таблицы 10. равна: M_{ϕ} = 18,70 кг. (26)

8.1.5.2 Расчет массы цилиндрической обечайки крышки

Масса погонного метра обечайки $M_{o\bar{o}}$ определяется из таблицы 2. Она равна для обечайки $D_{\rm B}$ =0,4 м и толщиной S=0,008 м $M_{o\bar{o}}$ =81 кг. Длина обечайки рассчитываемого аппарата равна: L_{o} = 0,2 м. Масса обечайки равна

$$M_0 = L_0 \times M_{00} = 0.2 \times 81 = 16.2 \text{ Kg}.$$
 (27)

В обечайке просверлено отверстие для трубы диаметром $d_{\rm H}=0{,}108$ м. Масса металла, отверстия определяется как

$$M_{o\phi} = 0.25\pi d_H^2 S^x \rho^x n,$$
 (28)

где $M_{o\varphi}$ – масса металла отверстия, кг;

n – количество отверстий.

$$M_{\phi\phi} = 0.25^{x} \pi^{x} 0.108^{2x} 0.008^{x} 7800^{x} 1 = 0.58 \text{ Kg}.$$
 (30)

Масса обечайки крышки равна:

$$M_{op} = M_o - M_{o\phi} = 16.2 - 0.58 = 15.62 \text{ kg}.$$
 (31)

8.1.5.3 Расчет массы фланца

Масса одного фланца M_{φ} (d_{v} =100мм) определяется из таблицы 16:

$$M_{\rm th} = 2.85 \text{ kg}.$$
 (32)

8.1.5.4 Расчет массы трубы патрубка (позиция 4 рисунок 6)

Масса одной трубы патрубка (d_y =100мм) определяется из таблицы 14. Она равна ($M_{\text{пм}}$ =15,09 кг масса одного погонного метра), длина трубы равна $L_{\text{тп}}$ = 0,155м. Масса трубы патрубка равна

$$M_{\text{TII}} = M_{\text{IIM}} \times L_{\text{TII}} = 18,79 \times 0,155 = 2,91 \text{ Kg}.$$
 (33)

8.1.5.5 Расчет массы днища

Масса одного днища $M_{\text{дн}}$ определяется из таблицы 3. Она равна

$$M_{\rm JH} = 13,40 \ \rm kg.$$

8.1.5.6 Общая масса крышки корпуса (позиция 5 рисунок 2)

$$M_{\text{KP}} = M_{\phi} + M_{\text{op}} + M_{\phi} + M_{\text{TII}} + M_{\text{ZH}} = 18,7 + 15,62 + 2,85 + 2,91 + 13,90 = 53,48 \text{ kg}.$$
 (34)

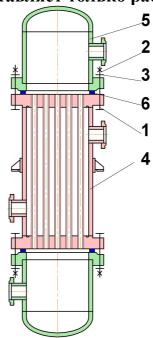
8.1.6 Расчет массы прокладок (позиция 6 рисунок 2)

Масса одной прокладки M_{Π} определяется из таблицы 22. Она равна:

$$M_{\Pi} = 0.068 \text{ KT}.$$
 (35)

Масса двух прокладок равна:

$$M_{\Sigma\Pi} = n \times M_{\Pi} = 2 \times 0,068 = 0,13 \text{ Kg.}$$
 (36)


8.1.7 Расчет общей массы теплообменного горизонтального аппарата

$$M_{\text{an}} = M_{\Sigma 6} + M_{\Sigma \Gamma} + M_{\Sigma \text{III}} + M_{\text{kop}} + n_{\text{x}} M_{\text{kp}} + M_{\Sigma \text{II}} =$$

$$= 12,59 + 2,28 + 0,68 + 387,99 + 2 \times 53,48 + 0,13 = 510,63 \text{ kg}.$$
(37)

8.2 Расчет массы аппарата теплообменного вертикального, работающего под избыточным давлением

Расчет массы аппарата теплообменного вертикального, работающего под избыточным давлением необходимо выполнить согласно схеме аппарата, представленной на рисунке 7, при этом расчет отдельных элементов выполняется в последовательности расчета массы горизонтального аппарата. Исключение составляет только расчет опоры.

1 – болт, 2 – гайка, 3 – шайба, 4 – корпус, 5 – крышка, 6 – прокладка.

Рисунок 7— Схема основных элементов для расчета массы вертикального теплообменного аппарата

8.2.1 Расчет массы опоры (лапы) вертикального аппарата

При расчете массы опоры используется схема, данная на рисунке 8.

Масса одной опоры определяется по сумме массы деталей позиция 1-3 (рисунок 6)

$$M_1 = \pi \rho^x S^x 0.3 D_B^x (D_B + S)^x \alpha_2 / 360^0, \tag{37}$$

$$M_2 = \rho^x S^x (0.2D_B + S)^x (0.15D_B - S)/2 + 0.2D_B S^x S, \qquad (38)$$

$$M_3 = \rho^x S^x 0, 15 D_B^x (0, 15 D_B - S) - \pi^x d^2_{\phi \delta}^x S / 4, \tag{39}$$

где $D_{\text{в}}$ — внутренний диаметр корпуса, м;

S – толщина обечайки, м;

 α_2 – угол (таблица 25), град;

 $d_{\varphi \delta}$ – диаметр отверстий под фундаментные болты, м.

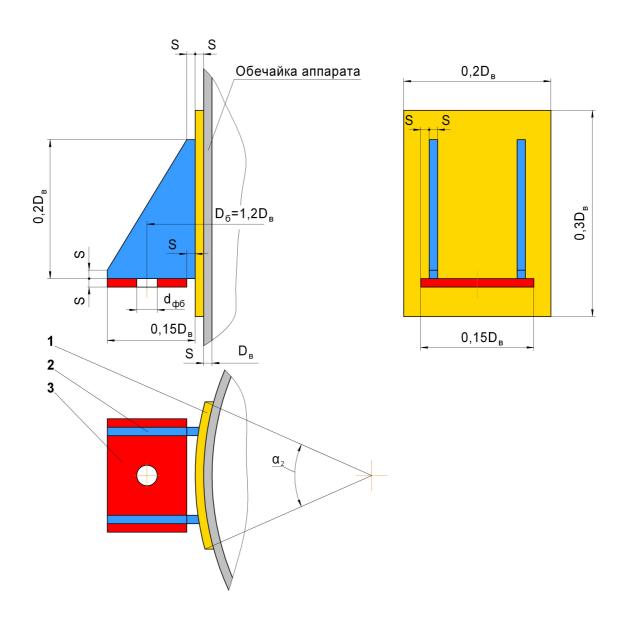
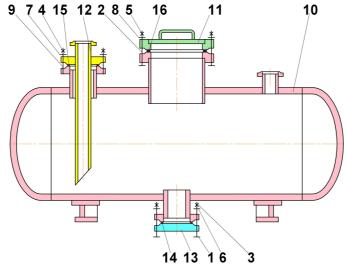
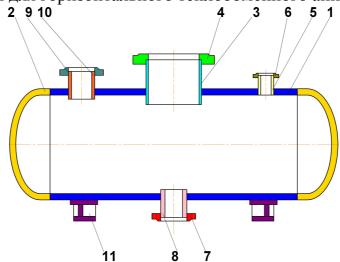



Рисунок 8 – Схема для расчета массы опоры (лапы) вертикального аппарата

8.3 Расчет массы монжуса горизонтального, работающего под избыточным давлением

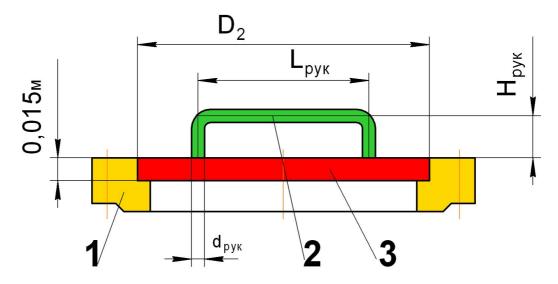
Расчет массы монжуса горизонтального, работающего под избыточным давлением, необходимо выполнить согласно схеме аппарата, представленной на рисунке 9.



1,2 — болт, 3,4,5 — гайка, 6,7,8 — шайба, 9— шпилька, 10 — корпус, 11 — крышка люка, 12— труба передавливания, 13— заглушка, 14,15,16 — прокладка.

Рисунок 7 — Схема основных элементов для расчета массы горизонтального монжуса

8.3.1 Расчет массы корпуса монжуса горизонтального


При расчете массы опоры используется схема, данная на рисунке 10. Расчет отдельных элементов корпуса выполняется в последовательности и по формулам, как и для горизонтального теплообменного аппарата.

1- обечайка, 2- эллиптическое днище, 3 - обечайка люка, 4- фланец люка, 5,8,10 - труба фланца, 6,7,9- фланец, 11 - опора нижняя аппарата. Рисунок 10 - Схема основных элементов для расчета массы горизонтального монжуса

8.3.2 Расчет массы крышки люка монжуса горизонтального

При расчете массы крышки люка используется схема, данная на рисунке 11.

1- фланец люка, 2- рукоятка, 2- плоская крышка.

Рисунок 11 – Схема для расчета массы крышки горизонтального монжуса

Масса крышки люка определяется по сумме массы деталей (позиция 1-3 рисунок 11)

 M_1 – определяется из таблицы 9,

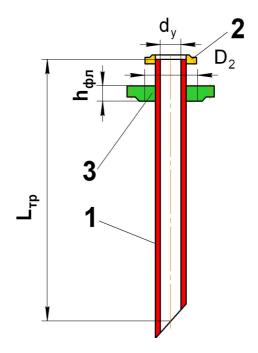
$$M_{2} = n \times \pi^{x} \rho^{x} d^{2}_{pyk} (L_{pyk} + 2H_{pyk})/4,$$

$$M_{3} = \rho^{x} \pi \times D_{2}^{2} \times 0,015/4.$$
(40)

$$M_3 = \rho^x \pi \times D_2^2 \times 0.015/4. \tag{41}$$

D₂— наружный диаметр обечайки люка, м; где

 $L_{\text{ рук}}$ – длина рукоятки, м;


 H_{pyk} – высота рукоятки, м;

 d_{pyk} – диаметр рукоятки, м;

n - количество рукояток.

8.3.3 Расчет массы трубы передавливания монжуса горизонтального

При расчете массы трубы передавливания используется схема, данная на рисунке 12.

1- труба; 2, 3-фланец.

Рисунок 12 – Схема для расчета массы трубы передавливания горизонтального монжуса

Масса крышки люка определяется по сумме массы деталей (позиция 1-3 рисунок 12)

Масса детали 1 определяется из таблицы 14. Зная условный диаметр трубы dy определяем массу одного погонного метра трубы MTp , при этом длина трубы равна $L_{\, \mathrm{Tp.n}}$, а масса

$$\mathbf{M_{1}} = \mathbf{M_{Tp}} \times \mathbf{L_{Tp.\pi}} \tag{42}$$

 M_2 – определяется из таблицы 15,

 M_3 – определяется из таблицы 15, как и для детали 9 (рисунок 10) и добавляется масса кольца равная

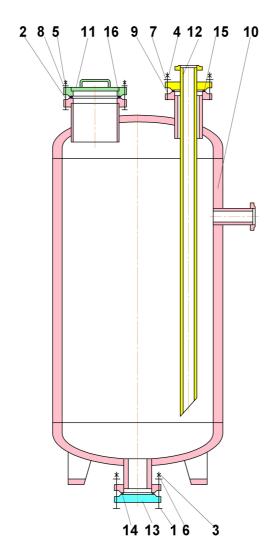
$$M_{\kappa} = h_{\phi \pi}^{x} \rho^{x} \pi^{x} (D_{2}^{2} - d_{H}^{2})/4,$$
 (43)

где $\;\;D_{2}-\;$ внутренний диаметр фланца (детали 9, рисунок 10), м;

 $L_{\, {
m Tp.}\pi}$ – длина трубы, м;

 $h_{\, \phi \pi}$ – высота фланца, м.

8.3.4 Расчет массы заглушки (деталь 13 рисунок 7) монжуса горизонтального


Масса заглушки определяется из таблицы 16, как и для детали 7 (рисунок 10) и добавляется масса равная

$$M_{\pi} = h_{\phi\pi} \times \rho^{x} \pi \times D_{2}^{2} / 4,$$
 (44)

где D_2 — диаметр фланца (детали 7 рисунок 10), м; $h_{\,\, \varphi \pi}$ — высота фланца (детали 7 рисунок 10), м.

8.4 Расчет массы монжуса вертикального, работающего под избыточным давлением

Расчет массы монжуса вертикального, работающего под избыточным давлением, необходимо выполнить согласно схеме аппарата, представленной на рисунке 13. Масса всех частей считается так же, как и для горизонтального аппарата. Исключение составляет только расчет массы опоры.

1,2 — болт, 3,4,5 — гайка, 6,7,8 — шайба, 9— шпилька, 10 — корпус, 11 — крышка люка, 12— труба передавливания, 13— заглушка, 14,15,16 — прокладка.

Рисунок 13 — Схема основных элементов для расчета массы вертикального монжуса

8.4.1 Расчет массы опоры (стойки) монжуса вертикального

При расчете массы опоры вертикального аппарата используется схема, данная на рисунке 14.

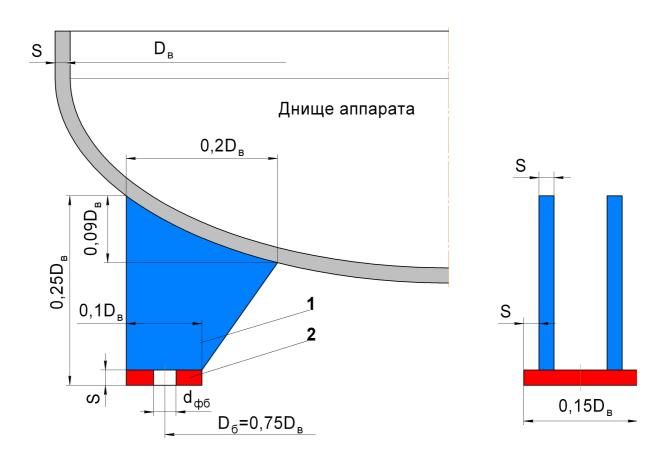
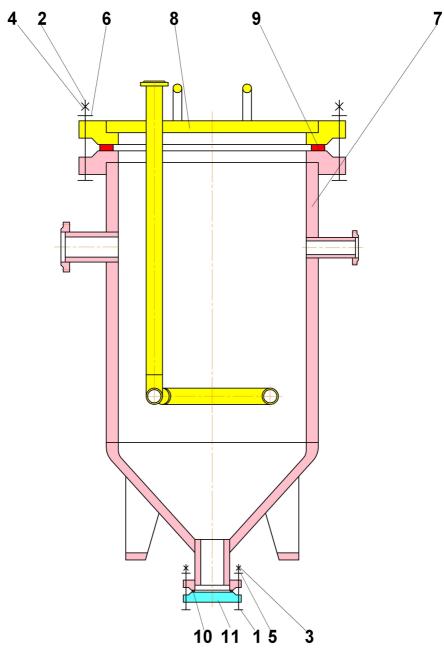


Рисунок 14 — Схема для расчета массы опоры (стойки) вертикального монжуса

Масса одной опоры определяется по сумме массы деталей позиция 1-2 (рисунок 14)

$$M_1 = 0.5\pi \rho D_B^2 \times S(0.018 + 0.048D_B - 0.3S)$$
 (45)

$$M_2 = 0.015\pi \rho D_B^2 \times S - \pi d_{\phi \delta}^2 \times S / 4,$$
 (46)

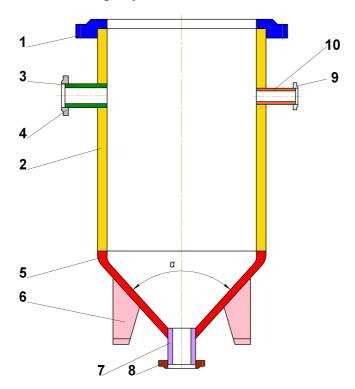

где $D_{\text{в}}$ – внутренний диаметр корпуса, м;

S – толщина обечайки, м;

 $d_{\varphi \delta}$ – диаметр отверстий под фундаментные болты, м.

8.5 Расчет массы сборника вертикального для суспензии (с барботером), работающего под избыточным давлением

Расчет массы сборника вертикального, работающего под избыточным давлением необходимо выполнить согласно схеме аппарата, представленной на рисунке 15. Масса всех частей считается по выше приведенным формулам. Исключение составляет только расчет массы корпуса и крышки аппарата.



1,2 – болт; 3,4, – гайка; 5,6, – шайба, 7 – корпус, 8 – крышка с барботером, 9, 10 – прокладка, 11– заглушка.

Рисунок 15 — Схема основных элементов для расчета массы сборника вертикального с барботером

8.5.1 Расчет массы корпуса сборника вертикального с барботером

При расчете массы корпуса сборника вертикального с барботером используется схема, данная на рисунке 16.

1– фланец корпуса, 2– обечайка; 3,7,10 – труба фланца; 4,8,10– фланец, 5 – коническое днище, 6 – опора (стойка) вертикального аппарата. Рисунок 16 – Схема для расчета массы корпуса сборника вертикального с барботером

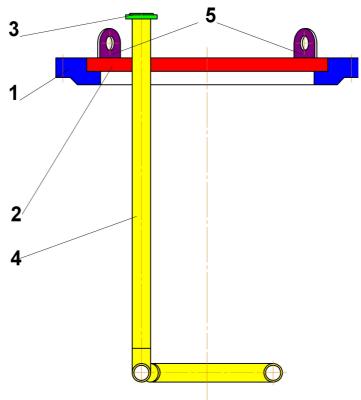
Масса корпуса считается как сумма выше перечисленных деталей, за исключением конического отбортованного днища позиция 5 (рисунок 16). Полная масса конического отбортованного днища берется из таблицы 17, 18 в зависимости от угла α (60 или 90), а затем из неё вычитается масса конуса, образованного основанием, равным $d_{\rm H}$ тр, с высотой $h_{\rm K}$ (таблицы 17,18), вычитаемая масса вычисляется по формулам

$$M_{1} = \pi \times \rho^{x} (1,5 \times d_{H Tp}^{2} \times S + 3,44 \times d_{H Tp} \times S^{2} +2,64 \times S^{3})/3,$$

$$M_{2} = \pi \times \rho^{x} (1,06 \times d_{H Tp}^{2} \times S + 3 \times d_{H Tp} \times S^{2} +2,82 \times S^{3})/3,$$
(47)

$$M_2 = \pi^x \rho^x \left(1.06^x d_{H,TD}^2 {}^xS + 3^x d_{H,TD} {}^xS^2 + 2.82 {}^xS^3 \right) / 3, \tag{48}$$

$$M_3 = \pi \times \rho \times (0.87 \times d_{HTp}^2 \times S + 3.46 \times d_{HTp} \times S^2 + 4.6 \times S^3) / 3, \tag{49}$$


 M_1 (при $\alpha = 60^0$), M_2 (при $\alpha = 90^0$), M_1 (при $\alpha = 120^0$), кг; где

d_{н тр} – наружный диаметр трубы, м;

S- толщина стенки, м.

8.5.2 Расчет массы крышки сборника вертикального с барботером

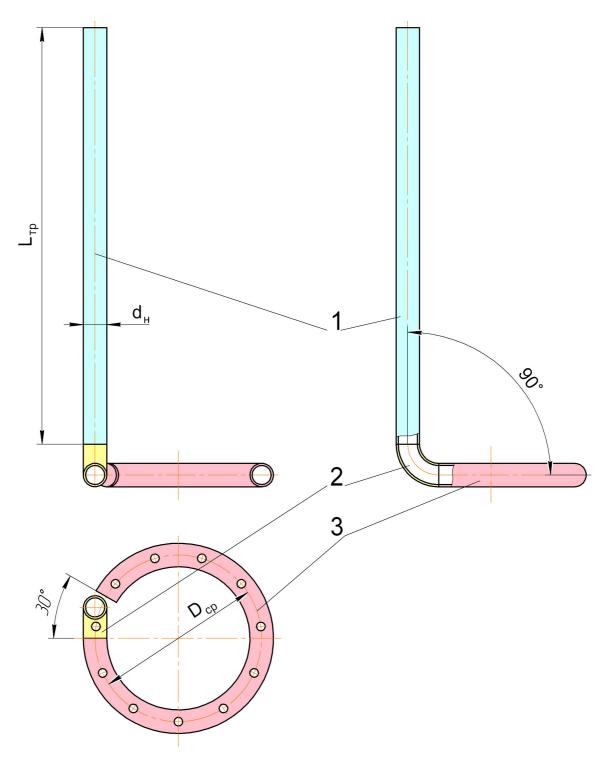
При расчете массы крышки сборника вертикального с барботером используется схема, данная на рисунке 17.

1- фланец корпуса, 2- крышка, 3 - фланец, 4- барботер, 5 - ушко.

Рисунок 17 — Схема для расчета массы крышки сборника вертикального с барботером

Масса крышки считается как сумма выше перечисленных деталей, за исключением барботера позиция 4 и ушка позиция 5 (рисунок 17). Масса одного ушка равна: М $_{ym} = 0.25$ кг. Схема для расчета массы барбатера представлена на рисунке 18. Барботер состоит из трех деталей: вертикальной трубы 1, отвода крутоизогнутого 2, кольцевой трубы 3.

$$M_1 = M_{Tp} \times L_{Tp}, \qquad (50)$$

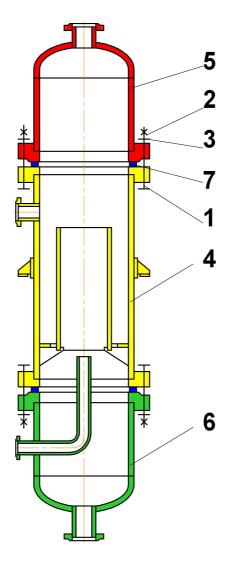

$$M_2$$
, из таблицы 38, (51)

$$M_3 = \pi \times 0.92 \times D_{cp}^2 \times M_{Tp},$$
 (52)

где $M_{\text{тр}}$ из таблицы 14 погонный метр, кг;

 D_{cp} – средний диаметр трубы (рисунок 16), м;

 L_{Tp} – длина трубы (рисунок 16), м.

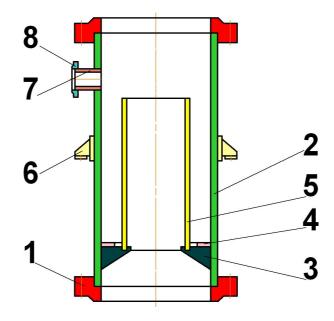


1– вертикальная труба, 2– крутоизогнутый отвод 3 – кольцевая труба.

Рисунок 18 – Схема для расчета массы барбатера

8.6 Расчет массы аппарата газлифтного вертикального, работающего под избыточным давлением

Расчет массы аппарата газлифтного вертикального, работающего под избыточным давлением необходимо выполнить согласно схеме аппарата, представленной на рисунке 19. Масса всех частей считается по выше приведенным формулам. Исключение составляет только расчет массы корпуса и нижней крышки аппарата.



1, – болт, 2 – гайка, 3 – шайба, 4 – корпус, 5 – крышка верхняя, 6 – крышка нижняя с барботером, 7 – прокладка.

Рисунок 19 – Схема основных элементов для расчета массы аппарата газлифтного вертикального

8.6.1 Расчет массы корпуса аппарата газлифтного вертикального

При расчете массы корпуса массы аппарата газлифтного вертикального используется схема, данная на рисунке 20.

1— фланец корпуса, 2— обечайка, 3 — косынка, 4 — кольцо, 5 — внутренняя труба, 6 — опора (стойка) вертикального аппарата 7 — труба фланца, 5 — фланец.

Рисунок 20 — Схема для расчета массы корпуса аппарата газлифтного вертикального

Масса корпуса считается как сумма выше перечисленных деталей, за исключением кольца позиция 4 (рисунок 20).

8.6.1.1 Расчет массы кольца для аппарата газлифтного вертикального

Схема для расчета массы кольца представлена на рисунке 21.

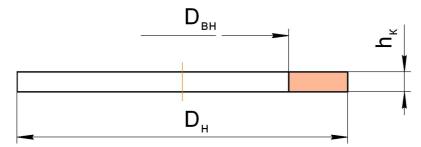


Рисунок 21 — Схема для расчета массы кольца аппарата газлифтного вертикального

Масса кольца $M_{\kappa n}$ считается по формуле

$$M_{KJ} = \pi^{x} \rho^{x} 0.25 \times h_{K} \times (D_{H}^{2} - D_{BH}^{2}), \tag{53}$$

где $D_{\mbox{\tiny H}},\, D_{\mbox{\tiny BH}},\, h_{\mbox{\tiny K}} -$ размеры кольца , м.

8.6.1.2 Расчет массы косынки для аппарата газлифтного вертикального

Схема для расчета косынки на рисунке 22.

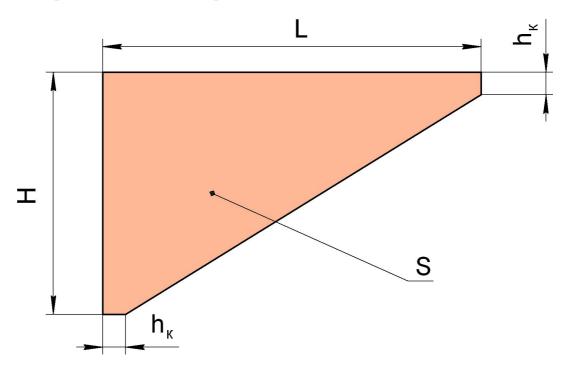
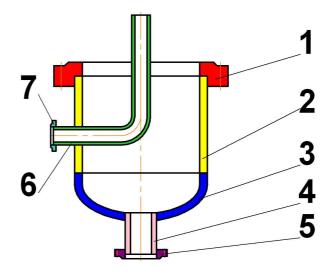


Рисунок 22 — Схема для расчета массы косынки аппарата газлифтного вертикального

Масса одной косынки $M_{1\kappa}$ считается по формуле

$$M_{1\kappa} = \rho^{x} S^{x}((L^{x}H - (H - h_{\kappa})^{x} (L - h_{\kappa})^{x} 0,5),$$
 (54)


где S, L, H, h_{κ} – размеры косынки, м.

Всего косынок 4, поэтому суммарная масса равна:

$$\mathbf{M}_{\kappa} = 4^{\kappa} \,\mathbf{M}_{1\kappa} \tag{55}$$

8.6.2 Расчет массы нижней крышки аппарата газлифтного вертикального

При расчете массы крышки аппарата газлифтного вертикального используется схема, данная на рисунке 23.

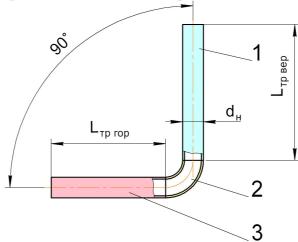

1 – фланец крышки, 2- обечайка, 3 – днище, 4 – труба фланца, 5,7 – фланец, 6 – труба подачи газа.

Рисунок 23 – Схема для расчета массы крышки аппарата газлифтного вертикального

Масса крышки нижней считается как сумма выше перечисленных деталей, за исключением трубы подачи газа (позиция 6 рисунок 23).

8.6.3 Расчет массы трубы подачи газа нижней крышки аппарата газлифтного вертикального

Труба подачи газа состоит из трех деталей (рисунок 24): вертикальной трубы 1, отвода круто изогнутого 2, горизонтальной трубы 3.

1– вертикальная труба, 2– крутоизогнутый отвод 3 – горизонтальная труба. Рисунок 24 – Схема для расчета трубы ввода газа Схема для расчета массы трубы подачи газа представлена на рисунке 24. Масса трубы ввода газа определяется как сумма:

$$M_1 = M_{Tp} \times L_{Tp Bep}, \qquad (56)$$

$$M_2$$
, из таблицы 38, (57)

$$M_3 = M_{Tp} \times L_{Tp \Gamma Op}.$$
 (58)

где $M_{\text{тр}}$ масса погонного метра из таблицы 14, кг;

 $L_{\text{ тр гор}}$ – длина горизонтальной трубы (рисунок 22), м;

 $L_{\, {
m Tp \; Bep}}$ – длина вертикальной трубы (рисунок 22), м.

9 Расчет номинального объема аппарата

В разделе необходимо вычислить номинальный объем аппарата. За номинальный принимается внутренний объём аппарата без учета объёмов открываемых крышек, штуцеров, люков, внутренних устройств. Для всех аппаратов эта величина одна, исключение составляет теплообменный аппарат, у которого необходимо вычислить объем трубного пространства и отдельно межтрубного.

9.1 Основные формулы для расчета объема химических аппаратов

Ниже приведены формулы для определения объема цилиндра, усеченного конуса, сферического сегмента и эллипсоида вращения.

9.1.1 Формула для расчета объема цилиндра

Основные размеры цилиндра представлены на рисунке 25.

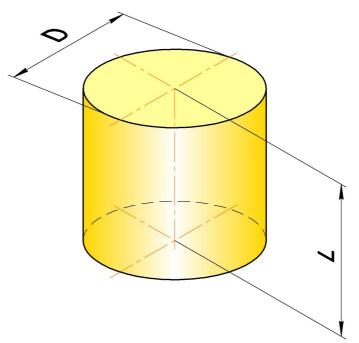


Рисунок 25 – Размеры цилиндра

Формула для расчета объема цилиндра

$$V_{\mathbf{I}} = \pi \times D^2 \times L/4, \tag{59}$$

где D – диаметр цилиндра, м; L – длина цилиндра, м.

9.1.2 Формула для расчета объема усеченного конуса

Основные размеры усеченного конуса представлены на рисунке 26.

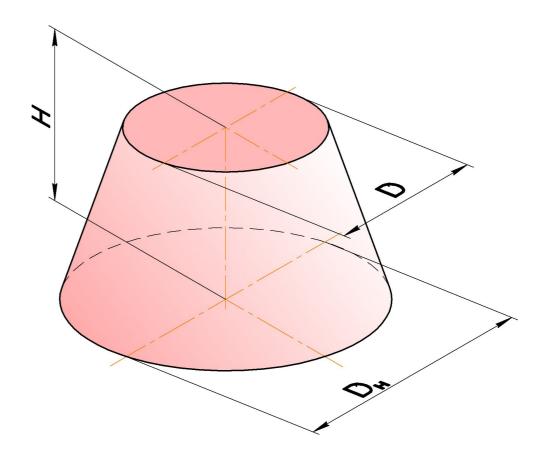


Рисунок 26 – Размеры усеченного конуса

Формула для расчета объема усеченного конуса

$$V_{Ky} = \pi^x H^x (D^2 + D^x D_H + D_H^2)/12,$$
 (60)

где $D_{\rm H}$ – диаметр основания конуса, м;

D – диаметр конуса, м;

L – высота усеченного конуса, м.

9.1.3 Формула для расчета объема сферического сегмента

Основные размеры сферического сегмента представлены на рисунке 27.

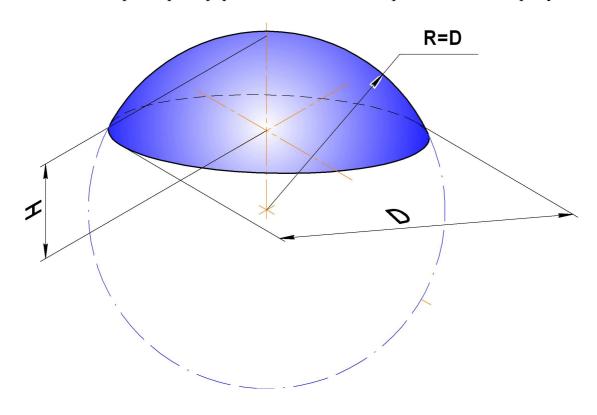


Рисунок 27 – Размеры сферического сегмента

Формула для расчета объема сферического сегмента

$$V_{cc} = 2/3^{x} \pi^{x} H^{x} (D^{2}),$$
 (61)

где D- диаметр основания сферического сегмента, м;

R – радиус сферы, м;

Н – высота сферического сегмента, м.

В нашем случае всегда R = D и формула преобразуется

$$V_{cc} = 0.1^{x} \pi^{x} (D^{3})$$

$$(62)$$

9.1.4 Формула для расчета объема эллипсоида вращения

Основные размеры эллипсоида вращения представлены на рисунке 28.

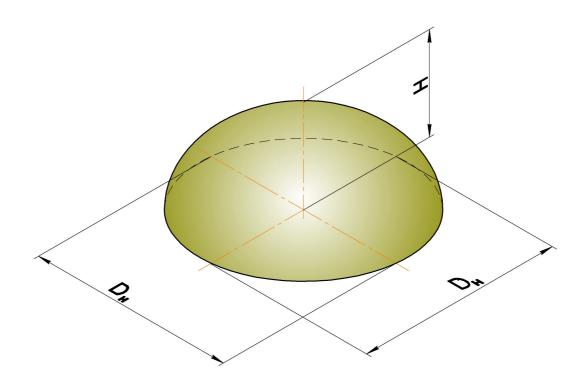


Рисунок 28 – Размеры эллипсоида вращения

Формула для расчета объема эллипсоида вращения

$$V_{3B} = \pi^x H^x D_H^2 / 6,$$
 (63)

где $D_{\rm H}$ – диаметр основания эллипсоида вращения, м; H – высота эллипсоида вращения, м.

В нашем случае всегда $H = h_{\scriptscriptstyle B}$

9.2 Пример вычисления объема теплообменного аппарата

Расчет объема аппарата теплообменного горизонтального, работающего под избыточным давлением будем выполнить согласно схеме аппарата представленной на рисунке 2. Схема расчета объема аппарата представлена на рисунке 29.

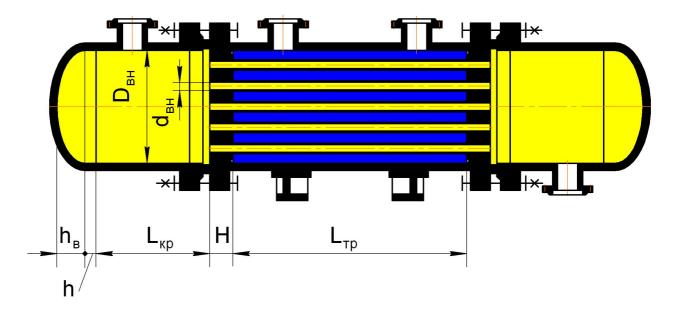


Рисунок 29 — Схема расчета объема аппарата теплообменного горизонтального

9.2.1 Расчет объема трубного пространства теплообменного аппарата

Объем трубного пространства складывается из двойного объема эллипсоида вращения:

$$V_{3B} = \pi x h_B x D_{BH}^2 / 3 = 3,14x 0,1 x 0,16/3 = 0,0168 m^3.$$
 (64)

Двойного объема цилиндрической крышки:

$$V_{\mu\kappa p} = \pi \times D_{BH}^2 \times (h + L_{\kappa p}) / 2 = 3,14 \times 0,16 \times 0,2 / 2 = 0,0503 \text{ m}^3.$$
 (65)

Объема п труб:

$$V_{Tp} = n^x \pi^x d^2_{BH} (2^x H + L_{Tp})/4 = 91^x 3,14^x 0,0004^x 1,2/4 = 0,0343 \text{ m}^3.$$
 (66)

Объем трубного пространства:

$$V_{\text{TP IIP}} = V_{3B} + V_{\text{IIKP}} + V_{\text{TP}} = 0.0168 + 0.0503 + 0.0343 = 0.1014 \text{ m}^3.$$
 (67)

9.2.1 Расчет объема межтрубного пространства теплообменного аппарата

Объем межтрубного пространства складывается из объема корпуса минус объем труб:

$$V_{\text{меж тр пр}} = V_{\text{кор}} = \pi \times L_{\text{тр}} \times D_{\text{вн}}^2 / 4 - n^{\chi} \pi \times d_{\text{нар}}^2 \times L_{\text{тр}} / 4 = 3,14^{\chi} 1,2^{\chi} 0,16/4 - 91^{\chi} 3,14^{\chi} 0,000625^{\chi} 1,2^{\chi} / 4 = 0,0971^{\chi} M^3.$$
 (68)

Объем теплообменного аппарата:

$$V_{Ta} = V_{Tp Tp} + V_{Mex Tp Tp} = 0.1014 + 0.0971 = 0.1985 M^{3}.$$
 (69)

10 Заключение

Заканчивая расчетную часть, студенту необходимо дать анализ полученных результатов, их соответствия заданию на работу, высказать соображения о возможных путях совершенствования данного процесса и его аппаратурного оформления.

Пример выполнения заключения:

- 1.В соответствии с техническим заданием разработан технический проект горизонтального кожухотрубчатого аппарата.
- 2.Выполнен чертеж (формата A1) общего вида горизонтального кожухотрубчатого аппарата.
- 3. В рамках технического проекта выполнен расчет полной массы аппарата, которая составляет величину:

$$M_{au}$$
=510,63 кг

4. Произведен расчет объема межтрубного пространства и трубного пространства, которые равны:

$$V_{\text{меж тр пр}} = 0.0972 \text{ M}^3$$
 $V_{\text{тр пр}} = 0.1015 \text{ M}^3$

5. Полный объем горизонтального теплообменного аппарата составляет величину:

$$V_{Ta} = 0.1987 \text{ m}^3$$

11 Масса цилиндрических вальцованных оболочек (ряды диаметров по ГОСТ 9617-76) для аппаратов, работающих под избыточным давлением

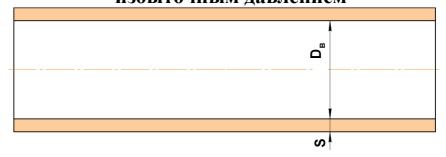


Рисунок 30 – Обечайка цилиндрическая

Таблица 2 - Основные размеры и масса обечаек цилиндрических

Внутренний	Давление в	Толщина	Масса погонного
диаметр обечайки	аппарате р, МПа	стенки	метра обечайки
Dв, мм		обечайки s, мм	Моб, кг
22,	0,6	6	60
	1,0	8	81
	1,6	8	81
400	2,5	10	101
400	4,0	12	122
	6,3	14	143
	8,0	18	186
	10,0	22	227
	0,6	8	100
	1,0	8	100
	1,6	10	126
500	2,5	12	152
300	4,0	12	152
	6,3	16	204
	8,0	22	283
	10,0	25	324
	0,3	8	120
	0,6	8	120
	1,0	10	150
	1,6	10	150
600	2,5	12	181
	4,0	16	243
	6,3	20	306
	8,0	25	385
	10,0	30	466

Продолжение таблицы 2

Внутренний	Давление в	Толщина	Масса погонного
диаметр обечайки	аппарате р, МПа	стенки	метра обечайки
Dв, мм		обечайки s, мм	Моб, кг
	0,3	8	140
	0,6	8	140
	1,0	10	175
	1,6	12	211
700	2,5	14	247
	4,0	16	283
	6,3	22	392
	8,0	28	503
	10,0	34	616
	0,3	8	159
	0,6	8	159
	1,0	10	200
	1,6	12	240
800	2,5	16	322
	4,0	20	404
	6,3	25	509
	8,0	30	614
	10,0	38	785
	0,3	8	179
	0,6	8	179
	1,0	10	224
	1,6	12	270
900	2,5	16	361
	4,0	20	454
	6,3	30	688
	8,0	34	783
	10,0	45	1049
	0,3	8	199
	0,6	10	249
	1,0	12	300
1000	1,6	12	300
	2,5	18	452
	4,0	22	554
	6,3	28	710
	8,0	38	973
	10,0	45	1160

Внутренний	Давление в	Толщина	Масса погонного
диаметр обечайки	аппарате р, МПа	стенки	метра обечайки
Dв, мм	1 17	обечайки s, мм	Моб, кг
	0,3	8	238
	0,6	10	298
	1,0	12	359
	1,6	14	419
1200	2,5	20	602
	4,0	25	755
	6,3	34	1035
	8,0	45	1382
	10,0	55	1072
	0,3	8	278
	0,6	10	348
	1,0	14	488
	1,6	14	488
1400	2,5	20	700
	4,0	28	986
	6,3	38	1348
	8,0	50	1788
	10,0	60	2160
	0,3	10	397
1600	0,6	10	397
	1,0	16	638
	1,6	16	638
	2,5	22	880
	4,0	32	1288
	6,3	45	1826
	8,0	55	2109

Внутренний	Давление в	Толщина	Масса погонного
диаметр обечайки	аппарате р, МПа	стенки	метра обечайки
Dв, мм		обечайки s, мм	Моб, кг
		1.0	116
	0,3	10	446
	0,6	10	446
1800	1,0	16	717
	1,6	16	717
	2,5	22	989
	0,3	10	496
	0,6	12	595
2000	1,0	16	796
	1,6	18	898
	2,5	22	1097
	0,3	10	545
2200	0,6	12	655
2200	1,0	18	986
	1,6	20	1095
	0,3	10	594
2400	0,6	12	714
2400	1,0	18	1073
	1,6	20	1194
	0,3	10	644
2600	0,6	12	773
2600	1,0	18	1167
	1,6	22	1413

12 Масса эллиптических отбортованных стальных днищ (ряды размеров по ГОСТ 6533-78) для аппаратов, работающих под избыточным давлением до 10 МПа

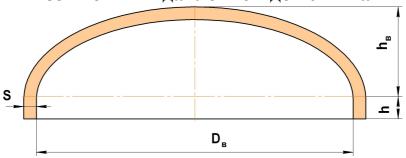


Рисунок 31 – Днище эллиптическое

Таблица 3 - Основные размеры и масса днищ эллиптических

Внутренний	bribic pasmepr	л и масса дп	<u>ищ эллиптических</u> Толщина	Масса днища
диаметр днища	Размер һв,	Размер h,	стенки днища	эллиптического
Dв, мм	MM	MM	S, MM	Мднэ, кг
			6	10,0
			8	13,4
			10	17,0
400	100	25	12	20,6
			14	24,3
			18	31,9
			22	39,8
			8	20,2
			10	25,5
500	125	25	12	30,8
300			16	41,8
			22	63,2
			25	72,7
	150	25	8	28,3
			10	35,2
			12	43,1
600		40	16	58,3
			20	78,5
			25	97,9
			30	122,0
			8	37,8
		25	10	47,5
700			12	57,4
	150		16	81,8
		40	20	92,5
		40	25	131,3
			30	171,7

Продолжение таблицы 3

Внутренний диаметр днища эллиптического Dв, мм	Размер hв, мм	Размер h,	Толщина стенки днища s, мм	Масса днища эллиптического Мднэ, кг
		25	8 10 12	48,6 61,1 73,8
800	225	40	16 20 25 30 38	104,3 131,8 167,0 203,1 278,5
		25	8 10	60,8 76,4
900	225	40	12 16 20	96,2 129,6 163,5
		60	30 34	265,1 284,1
		25	8 10	74,4 93,4
1000	250	40	12 14 20 25	117,1 137,2 198,7 251,1
		60	34 45 55	356,6 495,2 618,0
		25	8	105,6
			10	137,0
1200	330	40	12 14 20	165,0 193,2 279,3
		60	25 34 45	367,3 507,8 685,4
		80	55	886,7

Продолжение таблицы 3

Внутренний			Толщина	Масса днища
диаметр днища	Размер һв,	Размер h,	стенки днища	эллиптического
эллиптического	MM	MM	S, MM	Мднэ, кг
D в, мм				
			8	146,4
		40	10	183,6
			14	258,3
1400	250		20	387,3
1400	350	60	28	549,1
			38	757,0
		0.0	50	1050,5
		80	60	1279,8
		40	10	237,1
		40	16	382,6
1600	400	(0)	22	548,2
1600	400	60	32	808,6
		0.0	45	1194,2
		80	55	1479,3
		40	10	297,4
1800	450		16	493,8
		60	22	684,1
		40	10	364,5
		40	12	438,2
2000	550		16	603,1
		60	18	680,0
			22	834,9
		40	10	438,4
2200	550		12	540,2
2200	550	60	18	815,4
			20	907,9
		40	10	519,1
2400	(00		12	638,4
2400	600	60	18	963,1
			20	1072,1
			10	619,5
2600	(50	(0)	12	744,7
2600	650	60	18	1123,0
			22	1377,3

13 Масса конических отбортованных стальных днищ, α =60° (ряды размеров по ГОСТ 12619-78) для аппаратов, работающих

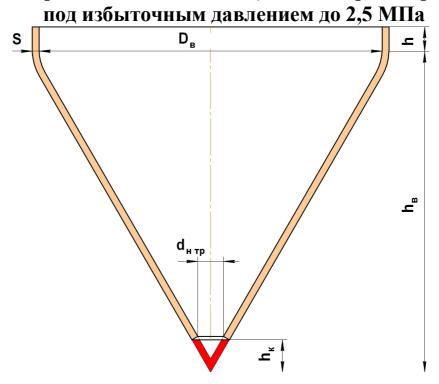


Рисунок 33 – Днище коническое отбортованное

Таблица 4 - Основные размеры и масса днищ отбортованных конических

Внутренний			Толщина	Масса днища
диаметр днища	Размер һв,	Размер h,	стенки днища	конического
конического Дв,	MM	MM	S, MM	Мднк, кг
MM				
			3	7,8
			4	10,4
400	367	30	6	15,8
			8	21,4
			10	27,0
			3	11,4
			4	15,3
500	452	30	6	23,1
			8	31,1
		40	10	40,6
			4	21,0
		30	6	31,7
600	541		8	42,6
		40	10	55,3
		40	12	66,9

Продолжение таблиц	ы 4	T		
Внутренний диаметр			Толщина	Масса днища
днища конического	Размер	Размер h,	стенки днища	конического
D в, мм	һв, мм	MM	S, MM	Мднк, кг
		20	4	27,6
		30	6	41,7
700	627	40	8	57,5
		40	10	72,3
		50	12	89,6
		30	4	38,7
		30	6	58,4
800	735	40	8	80,1
800	133	40	10	100.7
		50	12	124,2
		50	14	145,7
		20	4	47,6
		30	6	71,7
000	021	40	8	98,1
900	821	40	10	125,7
		50	12	151,6
		50	14	181,2
		30	4	57,3
		40	6	88,0
		40	8	117,9
1000	908	50	10	150,7
		50	12	181,7
		60	14	216,7
		60	16	248,3
		40	6	121,7
		50	8	165,5
		50	10	207,6
1200	1080	60	12	253,9
		60	14	297,4
			16	346,3
		70	18	391,0
		_	6	163,1
		50	8	218,1
			10	277,2
		60	12	333,8
1400	1254		14	395,9
		70	16	453,9
			18	519,0
		80	20	578,6
			20	570,0

Продолжение таблицы 4

Внутренний			Толщина	Масса днища
диаметр днища	Размер һв,	Размер h,	стенки днища	конического
конического Дв,	MM	MM	S, MM	Мднк, кг
MM				
		50	6	213,2
		30	8	285,1
		60	10	361,6
		70	12	440,2
1600	1439	70	14	515,0
1000	1439	90	16	597,1
		80	18	673,6
			20	767,9
		100	22	847,8
			25	966,5
		50	6	264,1
	1612	(0)	8	356,8
		60	10	447,1
		70	12	543,6
1000		80	14	642.5
1800			16	736,1
			18	847,5
		100	20	944,0
			22	1041,0
			25	1187,3
		50	6	320,5
		60	8	432,4
			10	547,0
		70	12	657,9
		80	14	776,6
2000	1705	-	16	906,5
2000	1785	100	18	1022,0
		100	20	1138,2
			22	1254,9
			25	1457,6
		120	28	1638,0
			30	1759,0

Продолжение таблицы 4

Внутренний			Толщина	Масса днища
диаметр днища	Размер һв,	Размер h,	стенки днища	конического
конического Дв,	MM	MM	S, MM	Мднк, кг
MM				
		60	8	515,3
		70	10	651,2
		0.0	12	789,9
		80	14	923,5
			16	1076,0
2200	1958	100	18	1213,0
		100	20	1350,7
			22	1488,8
			25	1726,2
		120	28	1939,3
		120	30	2082,2
		60	8	605,5
	2130	70	10	764,5
		80	12	926,6
			14	1100,5
2400		100	16	1260,1
2400			18	1420,4
			20	1606,3
		120	22	1770,0
			25	2017,5
			28	2266,1
		70	8	708,2
			10	893,2
2600		80	12	1074,1
	2202		14	1274,1
	2303	100	16	1458,1
			18	1644,0
		160	20	1857,0
		120	22	2046,3

14 Масса конических отбортованных стальных днищ, α =90° (ряды размеров по ГОСТ 12619-78) для аппаратов, работающих под избыточным давлением до 2,5 МПа

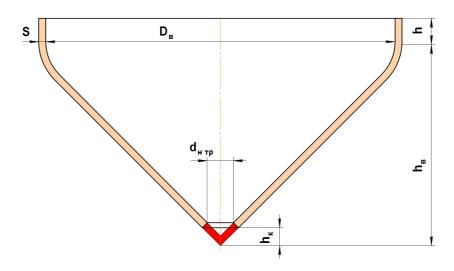


Рисунок 34 – Днище коническое отбортованное

Таблица 5 - Основные размеры и масса днищ отбортованных конических

Внутренний			Толщина	Масса днища
диаметр днища	Размер һв,	Размер h,	стенки днища	конического
конического Дв,	MM	MM	S, MM	Мднк, кг
MM			,	,
			3	6,5
			4	8,7
400	232	30	6	13,3
			8	17,9
			10	22,6
	282		3	9,1
		30	4	12,2
500			6	18,5
			8	24,9
		40	10	33,0
			4	16,3
	332	30	6	24,6
600			8	33,1
		40	10	43,5
		40	12	52,6
		30	4	20,9
700		30	6	31,6
	382	40	8	44,0
		40	10	55,5
		50	12	69,4

Продолжение таблицы 5

Внутренний диаметр днища конического Dв, мм	Размер hв, мм	Размер h,	Толщина стенки днища s, мм	Масса днища конического Мднк, кг
		30	4 6	31,7 47,9
800	466	40	8 10	66,2 83,3
		50	12 14	103,4 121,4
		30	4 6	38,1 57,5
000	£1.6	40	8	79,1
900	516	50	10	102,2
		50	12	123,3
		60	14	148,4
	566	30	4	45,0
		40	6	69,6
			8	93,3
1000		50	10	120,1
			12	144,8
		60	14	173,9
			16	199,7
		40	6	93,3
	656	50	8	127,6
1200			10	160,2
1200	656	60	12 14	197,2 231,0
			16	270,6
		70	18	305,7
			6	122,8
		50	8	164,3
1400			10	210,0
	766	60	12	252,9
		70	14	301,6
			16	346,0
		00	18	397,8
		80	20	443,6

Продолжение таблицы 5

Внутренний диаметр днища	Размер һв,	Размер h,	Толщина стенки днища	Масса днища конического
_				
конического Дв,	MM	MM	S, MM	Мднк, кг
MM			6	161,8
		50	8	216,4
		60	10	275,8
		00	12	337,3
		70	14	394,8
1600	932		16	459,9
		80	18	519,0
			20	596,6
		100	22	658.4
		100	25	751,7
		50	6	197,0
		30	8	267,4
	982	60	10	335,2
		70	12	400,3
			14	485,8
1800		80	16	556,8
			18	646,1
			20	719,9
		100	22	784,2
			25	906,5
		50	6	235,8
		60	8	319,4
			10	405,7
		70	12	488,1
		80	14	578,5
2000	1000		16	680,2
	1082		18	767,3
		100	20	854,8
			22	942,8
			25	1103,2
		120	28	1240,4
			30	1332,4

Продолжение таблицы 5

Внутренний			Толщина	Масса днища
диаметр днища	Размер һв,	Размер h,	стенки днища	конического
конического Дв,	MM	MM	S, MM	Мднк, кг
MM				
		60	8	376,1
		70	10	477,1
		90	12	580,9
		80	14	679,4
			16	798,1
2200	1182	100	18	898,9
			20	1001,3
			22	1130,3
		120	25	1285,1
		120	28	1448,9
			30	1556,2
	1282	60	8	437,4
		70	10	554,3
		80	12	674,2
			14	805,9
2400		100	16	923,2
2400			18	1041,0
			20	1184,8
		120	22	1306,3
			25	1489,4
			28	1673,7
		70	8	508,4
			10	643,9
2600		80	12	774,4
	1202		14	924,3
	1382	100	16	1058,6
			18	1193,5
		120	20	1356,2
		120	22	1495,0

15 Масса сферических неотбортованных стальных днищ, (по ГОСТ 52630-2006) для аппаратов, работающих под избыточным давлением до 1,6 МПа

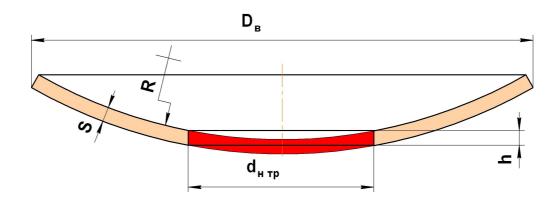


Рисунок 35 – Днище сферическое неотбортованное

Таблица 6 - Основные размеры и масса днищ неотбортованных сферических

Внутренний		Толщина	Масса днища
диаметр днища	Размер R, мм	стенки днища	сферического
сферического	1 /	S, MM	Мднс, кг
Dв, мм			
		4	4,3
		6	6,4
400	400	8	8,6
		10	10,8
		12	13,1
		4	6,7
		6	10,0
500	500	8	13,4
		10	16,9
		12	20,3
		4	9,6
		6	14,4
600	600	8	19,3
		10	24,2
		12	29,2
		4	13,0
		6	19,6
700	700	8	26,2
		10	32,8
		12	39,5

Внутренний		Толщина	Масса днища
диаметр днища	Размер R, мм	стенки днища	сферического
сферического	1 /	S, MM	Мднс, кг
Dв, мм			
		4	17,0
		6	25,6
800	800	8	34,1
		10	42,8
		12	51,5
		4	6,7
		6	10,0
900	900	8	13,4
		10	16,9
		12	20,3
		4	21,5
		6	32,3
1000	1000	8	43,2
		10	54,1
		12	65,1
		4	38,2
		6	57,4
1200	1200	8	76,8
		10	96,8
		12	115,3
		4	52,0
		6	78,0
1400	1400	8	104,2
		10	130,5
		12	156,8

Внутренний диаметр днища сферического	Размер R, мм	Толщина стенки днища s, мм	Масса днища сферического Мднс, кг
,		4	67,8
		6	101,9
1600	1600	8	136,0
		10	170,2
		12	204,5
		4	85,8
		6	128,9
1800	1800	8	172,0
		10	215,3
		12	258,6
		4	105,3
		6	159,1
2000	2000	8	212,3
		10	265,7
		12	319,1
		4	128,2
		6	192,4
2200	2200	8	256,8
		10	321,3
		12	385,9
		4	152,5
		6	228,9
2400	2400	8	305,5
		10	382,2
		12	459,0
		4	178,9
		6	268,6
2600	2600	8	358,5
		10	448,4
		12	538,5

16 Масса конических неотбортованных стальных днищ, α =60° (ряды размеров по ГОСТ 12620-78) для аппаратов, работающих под наливом

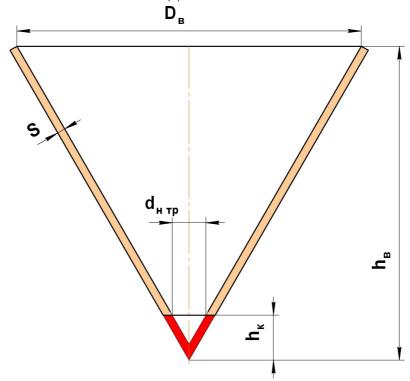


Рисунок 36 – Днище коническое неотбортованное

Таблица 7 - Основные размеры и масса днищ конических неотбортованных

· · · · · · · · · · · · · · · · · · ·	рвные размеры и масса дн		<u> </u>
Внутренний		Толщина	Масса днища
диаметр днища	Размер һв, мм	стенки днища	конического
конического Дв,		S, MM	Мднк, кг
MM			
400	346	3	6,0
400	340	4	8,0
		3	9,3
500	433	4	12,5
		6	18,7
		3	13,4
600	520	4	18,0
		6	20,7
		3	24,4
700	606	4	36,8
		6	49,3
		4	31,8
800	692	6	48,0
		8	64,2
		4	30,2
900	779	6	40,2
		8	81,1

Продолжение таблицы 7

Внутренний диаметр днища	Размер нв, мм	Толщина стенки днища	Масса днища конического
конического Дв,		S, MM	Мднк, кг
MM			
		4	49,6
1000	866	6	74,7
		8	99,9
		4	71,4
1200	1038	6	107,4
		8	143,6
		6	146,0
1400	1212	8	195,2
		10	224,5
		6	190,5
1600	1358	8	254,6
		10	319,0
		6	241,0
1800	1559	8	321,9
		10	403,1
		6	297,3
2000	1732	8	397,1
		10	497,2
		8	480,2
2200	1905	10	601,3
		12	722,5
		8	571,7
2400	2078	10	714,9
		12	859,2
		8	670,0
2600	2252	10	839,0
		12	1004,7

17 Масса конических неотбортованных стальных днищ, α =90° (ряды размеров по ГОСТ 12620-78) для аппаратов, работающих под наливом

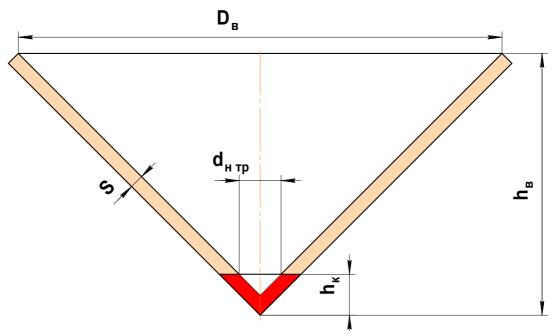


Рисунок 37 – Днище коническое неотбортованное

Таблица 8 - Основные размеры и масса днищ конических неотбортованных

	овные размеры и масса дн	1	
Внутренний	_	Толщина	Масса днища
диаметр днища	Размер һв, мм	стенки днища	конического
конического Дв,		S, MM	Мднк, кг
MM			
400	200	3	4,2
400	200	4	5,7
		3	6,7
500	250	4	8,8
		6	13,3
		3	9,5
600	300	4	12,7
		6	19,1
		4	17,2
700	350	6	25,9
		8	34,7
		4	22,5
800	400	6	33,8
		8	45,2
		4	28,4
900	450	6	42,7
		8	57,1

утренний диаметр днища	Размер һв, мм	Толщина стенки днища	Масса днища конического
конического Дв,		S, MM	Мднк, кг
MM			
		4	35,0
1000	500	6	52,7
		8	70,4
		4	50,4
1200	600	6	75,7
		8	101,2
		6	102,9
1400	700	8	137,6
		10	172,3
		6	134,4
1600	800	8	174,5
		10	224,8
		6	170,0
1800	900	8	227,0
		10	284,2
		6	209,8
2000	1000	8	280,1
		10	350,6
		8	338,8
2200	1100	10	423,9
		12	509,4
		8	403,0
2400	1200	10	504,3
		12	605,9
		8	472,8
2600	1300	10	591,6
		12	710,7

18 Масса конических неотбортованных стальных днищ, α =120° (ряды размеров по ГОСТ 12620-78) для аппаратов, работающих под наливом

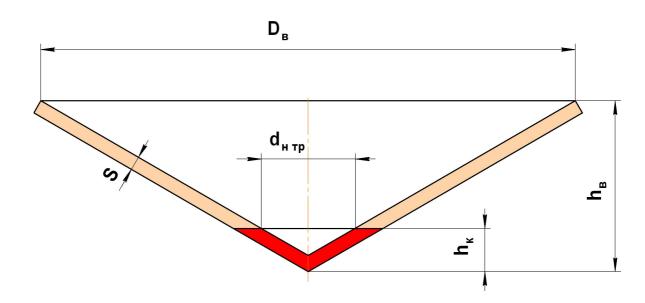


Рисунок 38 – Днище коническое неотбортованное

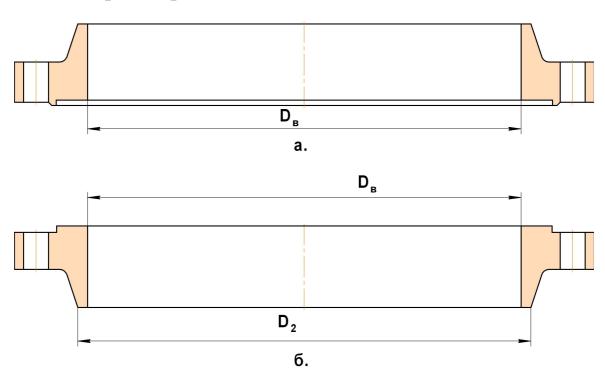
Таблица 9 - Основные размеры и масса днищ конических неотбортованных

Внутренний	эвиво размеры и масса ди	Толщина	Масса днища
диаметр днища	Размер нв, мм	стенки днища	конического
конического Дв,	<u>-</u>	S, MM	Мднк, кг
MM			
		3	3,4
400	115	4	4,6
		6	6,9
		3	5,4
500	144	4	7,2
		6	10,8
		4	10,3
600	173	6	15,5
		8	20,8
		4	14,0
700	202	6	21,1
		8	28,2
		4	18,3
800	230	6	27,5
		8	36,8
		4	23,2
900	260	6	34,8
		8	46,5

Внутренний		Толщина	Масса днища
диаметр днища	Размер һв, мм	стенки днища	конического
конического Дв,		S, MM	Мднк, кг
MM			
		4	28,6
1000	288	6	42,9
		8	57,4
		4	41,,1
1200	346	6	61,8
		8	82,5
		6	84,0
1400	404	8	112,2
		10	140,4
		6	109,7
1600	462	8	146,4
		10	183,2
		6	138,7
1800	520	8	185,2
		10	231,7
		6	171,2
2000	577	8	228,5
		10	285,9
		8	276,4
2200	635	10	345,8
		12	415,3
		8	328,8
2400	692	10	411,4
		12	494,1
		8	385,8
2600	750	10	482,6
		12	579,6

19 Масса стальных приварных фланцев для обечаек аппарата (ряды размеров по ГОСТ 28759.2-90) для аппаратов, работающих под давлением до 1,6 МПа

Рисунок 39 – Плоский приварной фланец


Таблица 10 - Основные размеры и масса плоских приварных фланцев

Внутренний	Новные размеры и масса плоских приварных Диаметр		Масса фланца
диаметр фланца	Давление р,МПа	фланца D2, мм	плоского
Dв, мм	- · · ·		приварного
			Мф, кг
	0,6	412	13,4
400	1,0	416	18,7
	1,6	416	22,8
	0,6	516	15,9
500	1,0	516	28,5
	1,6	520	32,6
	0,3	616	19,0
600	0,6	616	23,2
000	1,0	620	33,0
	1,6	620	38,3
	0,3	716	21,8
700	0,6	716	31,8
/00	1,0	720	38,0
	1,6	724	55,8
	0,3	816	24,6
800	0,6	816	35,9
800	1,0	820	51,5
	1,6	824	72,3
	0,3	916	37,7
900	0,6	916	44,5
900	1,0	920	74,1
	1,6	924	89,5

Продолжение таблицы 10

Внутренний		Диаметр	Масса фланца
диаметр фланца	Давление р,МПа	фланца D2, мм	плоского
Dв, мм			приварного
			Мф, кг
	0,3	1016	41,5
1000	0,6	1020	56,7
1000	1,0	1024	80,9
	1,6	1024	107,5
	0,3	1216	58,4
1200	0,6	1220	76,4
1200	1,0	1224	121,1
	1,6	1228	157,8
	0,3	1416	68,0
1.400	0,6	1420	99,2
1400	1,0	1428	138,5
		1428	188,6
	1,6	1620	75,4
1600	0,6	1620	124,9
1600	1,0	1632	226,2
	1,6	1632	273,8
	0,3	1820	98,7
1900	0,6	1820	153,6
1800	1,0	1832	287,5
	1,6	1832	334,7
	0,3	2020	140,4
2000	0,6	2024	199,7
2000	1,0	2032	353,7
	1,6	2036	414,5
	0,3	2220	171,4
2200	0,6	2224	218,8
2200	1,0	2236	411,5
	1,6	2240	451,0
	0,3	2420	204,7
2400	0,6	2424	274,6
<i>2</i> 400	1,0	2436	570,4
	1,6	2440	737,4
	0,3	2620	277,9
2600	0,6	2624	411,2
	1,0	2636	670,0

20 Масса стальных приварных фланцев с выступом и впадиной для обечаек аппарата (ряды размеров по ГОСТ 28759.3-90) для аппаратов, работающих под давлением до 6,3 МПа

а – исполнение 1, б – исполнение 2

Рисунок 40 – Фланец приварной с выступом и впадиной

Таблица 11 - Основные размеры и масса фланцев с выступом и впадиной

Внутренний диаметр	Давление р,МПа	Диаметр фланца D4,	Масса фланца с выступом и впадиной Мф, кг	
фланца Dв, мм	17	MM	Исполнение 1	Исполнение 2
	2,5	420	30,3	30,3
400	4,0	424	56,4	55,2
	6,3	428	79,2	78,0
	2,5	524	43,9	44,1
500	4,0	524	86,6	85,0
	6,3	532	107,7	107,1
600	2,5	624	57,9	58,2
	4,0	632	109,3	107,4
	6,3	640	169,2	167,4

Продолжение таблицы 11

Внутренний диаметр фланца Dв, мм	Давление р,МПа	Диаметр фланца D4, мм	_	и с выступом и й Мф, кг Исполнение 2
700	2,5	728	74,3	75,
	4,0	732	143,2	141,2
	6,3	744	244,6	242,1
	2,5	832	97,9	98,8
800	4,0	840	177,2	175,5
	6,3	850	300,5	297,9
900	2,5	932	118,2	118,8
	4,0	940	219,3	217,1
	6,3	960	423,6	420,5
1000	2,5	1036	147,2	147,8
	4,0	1044	309,7	306,6
	6,3	1056	538,1	534,4
1200	2,5	1240	242,4	244,1
	4,0	1250	466,0	463,3
	6,3	1268	740,8	737,3
1400	2,5	1440	326,7	329,1
	4,0	1456	605,4	601,9
	6,3	1476	1170,6	1164,9
1600	2,5	1644	417,2	419,7
	4,0	1664	931,2	927,8
	6,3	1690	1550,0	1544,1
1800	2,5	1844	535,1	537,6
2000	2,5	2044	732,9	736,5

21 Масса стальных приварных фланцев под металлическую прокладку для обечаек аппарата (ряды размеров по ГОСТ 28759.4-90) для аппаратов, работающих под давлением до 10 МПа

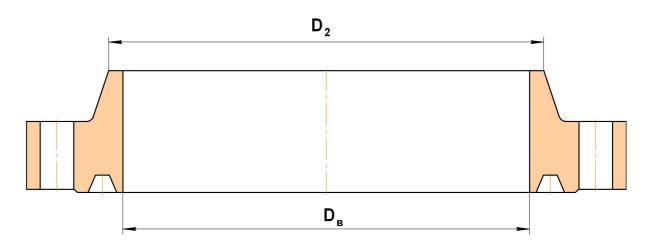


Рисунок 41 – Фланец приварной под металлическую прокладку

Таблица 12 - Основные размеры и масса фланцев под металлическую прокладку

Внутренний	Давление	Диаметр фланца	Масса фланца с
диаметр фланца	р,МПа	D2, мм	выступом и впадиной
Dв, мм			Мф, кг
400	8,0	436	99,4
400	10,0	444	108,6
500	8,0	544	158,4
300	10,0	550	197,4
600	8,0	650	213,2
000	10,0	660	307,2
700	8,0	756	318,0
700	10,0	768	456,9
800	8,0	860	433,0
800	10,0	876	612,1
900	8,0	968	613,5
	10,0	990	857,2
1000	8,0	1076	761,3
1000	10,0	1090	1087,8
1200	8,0	1290	1194,7
	10,0	1310	1690,2
1400	8,0	1500	1744,2
1400	10,0	1520	2401,5
1600	8,0	1710	2482,6

22 Масса стальных металлических прокладок для фланцевых соединений аппарата (ряды размеров по ГОСТ 28759.8-90) для аппаратов, работающих под давлением до 10 МПа



Рисунок 42 – Прокладка металлическая

Таблица 13 - Основные размеры и масса прокладок металлических

Внутренний	Давление	Диаметр	Масса прокладки Мп, кг
диаметр фланца	р,МПа	прокладки Оп,	
О в, мм		MM	
400	8,0 ; 10,0	475	2,1
500	8,0 ; 10,0	575	4,1
600	8,0 ; 10,0	675	6,1
700	8,0 ; 10,0	775	8,5
800	8,0 ; 10,0	875	11,5
900	8,0 ; 10,0	990	18,4
1000	8,0 ; 10,0	1090	23,3
1200	8,0 ; 10,0	1290	35,4
1400	8,0 ; 10,0	1500	55,7
1600	8,0 ; 10,0	1710	79,4

23 Масса стальных труб, (ряды диаметров по ГОСТ 8732-78) для аппаратов, работающих под избыточным давлением до 2,5 МПа



Рисунок 43 – Труба стальная

Таблица 14 - Основные размеры и масса трубы стальной

Условный диаметр трубы dy, мм	Наружный диаметр трубы dн, мм	Толщина стенки трубы s, мм	Масса погонного метра трубы Мтр, кг
15	20	2,5	1,08
20	25	2,5	1,39
25	32	3,5	2,46
32	38	3,5	3,32
40	45	3,5	3,58
50	57	4,0	5,23
65	76	5,0	8,76
80	89	5,5	11,33
100	108	6,0	15,09
125	133	6,0	18,79
150	159	6,5	22,45
200	219	8,5	44,13
250	273	9,5	61,73
300	325	11,0	85,15

24 Масса стальных труб, (ряды диаметров по ГОСТ 8732-78) для аппаратов, работающих под избыточным давлением до 10 МПа

Рисунок 44 – Труба стальная

Таблица 15 - Основные размеры и масса трубы стальной

Условный диаметр трубы dy, мм	Наружный диаметр трубы dн, мм	Толщина стенки трубы s, мм	Масса погонного метра трубы Мтр, кг
15	20	2,5	1,08
20	25	2,5	1,39
25	32	3,5	2,46
32	38	3,5	3,32
40	45	4,0	4,04
50	57	6,0	7,53
65	76	7,0	11,91
80	89	7,0	14,16
100	108	8,0	19,73
125	133	10,0	30,33
150	159	11,0	40,15
200	219	14,0	70,78
250	273	18,0	113,20
300	325	20,0	150,44

25 Масса стальных приварных фланцев для труб (ряды размеров по ГОСТ 12820-80) для аппаратов, работающих под давлением до 2,5 МПа

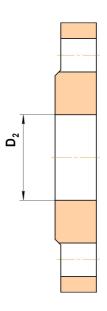


Рисунок 45 – Плоский приварной фланец

Таблица 16 - Основные размеры и масса плоских приварных фланцев

Условный	товные размеры и мас	Диаметр фланца	Масса фланца
диаметр трубы	Давление р, МПа	D2, MM	плоского
dy, мм			приварного Мф,
			КГ
	0,3	32	0,55
	0,6	32	0,64
25	1,0	32	0,89
	1,6	32	1,17
	2,5	32	1,17
	0,3	38	0,79
	0,6	38	1,01
32	1,0	38	1,40
	1,6	38	1,58
	2,5	38	1,77
	0,3	45	0,95
	0,6	45	1,21
40	1,0	45	1,71
	1,6	45	1,96
	2,5	45	2,18
	0,3	57	1,04
	0,6	57	1,33
50	1,0	57	2,06
	1,6	57	2,58
	2,5	57	2,71

Продолжение таблицы 16

Условный	10	Диаметр	Масса фланца
диаметр трубы	Давление р, МПа	фланца D2, мм	плоского
dy, мм			приварного Мф, кг
	0,3	76	1,39
	0,6	76	1,63
65	1,0	76	2,80
	1,6	76	3,42
	2,5	76	3,72
	0,3	89	1,84
	0,6	89	2,44
80	1,0	89	3,19
	1,6	89	3,71
	2,5	89	4,06
	0,3	108	2,14
	0,6	108	2,85
100	1,0	108	3,96
	1,6	108	4,73
	2,5	108	5,92
	0,3	133	2,60
	0,6	133	3,88
125	1,0	133	5,40
	1,6	133	6,38
	2,5	133	8,26
	0,3	159	3,61
	0,6	159	4,63
150	1,0	159	6,98
	1,6	159	8,16
	2,5	159	10,51
	0,3	219	4,73
	0,6	219	5,89
200	1,0	219	8,05
	1,6	219	10,10
	2,5	219	13,43
	0,3	273	6,95
	0,6	273	7,67
250	1,0	273	10,65
	1,6	273	14,49
	2,5	273	18,90
	0,3	325	9,33
	0,6	325	10,28
300	1,0	325	12,90
	1,6	325	17,78
	2,5	325	23,95

26 Масса стальных приварных встык фланцев для труб (ряды размеров по ГОСТ 12821-80) для аппаратов, работающих под давлением до 10 МПа

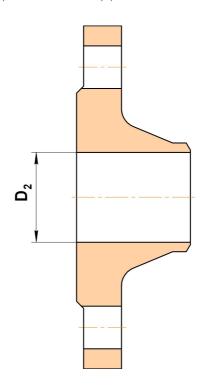


Рисунок 46 – Плоский приварной встык фланец

Таблица 17 - Основные размеры и масса плоских приварных встык фланцев

Условный		Диаметр фланца	Масса фланца
диаметр трубы	Давление р, МПа	D2, мм	плоского
dy, мм			приварного Мф,
			КГ
	4,0	32	1,18
25	4,0 6,3	32	2,30
	10,0	32	2,48
	4,0	38	1,83
32	6,3	38	2,94
	10,0	38	3,05
	4,0	45	2,19
40	6,3	45	3,75
	10,0	45	4,06
	4,0	57	2,81
50	6,3	57	4,63
	10,0	57	6,03

Продолжение таблицы 17

Условный		Диаметр фланца	Масса фланца
диаметр трубы	Давление р, МПа	D2, мм	плоского
dy, MM	давление р, типа	<i>D2</i> , WW	приварного Мф,
ay, min			КГ
	4,0	76	3,71
65	6,3	76	6,29
	10,0	76	8,52
	4,0	89	4,80
80	6,3	89	7,22
	10,0	89	9,91
	4,0	108	7,40
100	6,3	108	10,71
	10,0	108	14,65
	4,0	132	10,00
125	6,3	132	17,13
	10,0	132	23,32
	4,0	158	13,03
150	6,3	158	24,60
	10,0	158	32,87
	4,0	218	24,44
200	6,3	218	36,60
	10,0	218	54,24
	4,0	272	37,59
250	6,3	272	50,89
	10,0	272	85,24
	4,0	324	57,10
300	6,3	324	68,15
	10,0	324	127,78

27 Масса болтов крепежных ряды размеров по ГОСТ 15589-70, (М33, М39, М52, М 56, М60) по ГОСТ50793-95 (ИСО 4017-880)

Таблица 18 – Масса болтов

Длина	Теоретическая масса 1000 шт. болтов, кг														
болта				пр	и ном	линај	тьном	и диа	метре	е резн	ьбы d	, MM			
l, mm	M10	M12	M16	M20	M24	M27	M30	M 33	M36	M39	M42	M48	M52	M56	M60
10	16,68	-	-	_	_	-	_	-	_	-	-	-	-	-	_
12	17,82	_	-	_	_	_	_	-	_	_	_	-	-	_	_
14	18,96	27,89	_	_	_	_	_	_	_	_	_	-	_	_	_
16	20,10	29,48	-	_	_	-	_	_	_	-	_	-	-	-	_
18	21,23	31,12	65,54	_	_	_	_	-	_	_	_	-	-	_	_
20	22,37	32,76	68,49	_	_	-	_	-	_	-	_	-	-	_	-
22	23,51	34,40	71,44	_	_	-	_	_	_	-	_	-	-	-	_
25	25,22	36,86	75,87	133,3	_	_	_	-	_	_	_	-	-	_	_
28	26,92	39,32	80,29	140,2	_	-	_	-	_	-	_	-	-	_	-
30	28,52	40,96	83,24	144,8	_	_	_	-	_	_	_	-	-	_	_
32	29,43	42,59	86,19		237,0	-	_	_	_	-	_	_	-	_	_
35	31,28	45,34	90,62		246,0	340,6	_	_	_	-	_	_	-	_	_
38	33,18	48,00	95,04	163,2	256,9	353,3	_	_	_	_	_	-	_	_	_
40	34,36	49,78	97,99		263,5		474,8	_	_	_	_	_	_	_	_
45	37,45	54,22	105,7		280,1		500,9	_	_	_	_	_	_	_	_
50	40,53	58,67	113,6		296,7		526,9	_	834,5	_	_	_	_	_	_
55	43,62	63,11	121,5		-			_	872,1	_	1304	_	_	_	_
60	46,70	67,55	129,4		-			_	909,8	_	1356	_	_	_	_
65	49,70	71,99	137,3		348,8		605,1	731	947,4		1407	2009	_	_	_
70	52,87	76,44	145,2		366,5		631,1	760	985,0		1458	2076	_	_	_
75	55,96	80,88	153,1			513,6		_	1023	_	1509	2143	_	_	_
80	59,04	85,33	161,0		402,1		687,5	818	1061	1264	1561	2211	_	_	_
85	62,13	89,77	168,9		-	558,6		_	1098	_	1612	2278	_	_	_
90	65,21	94,20	176,8		437,6		743,0	876	1141	1345	1663	2345	_	_	_
95	68,30	98,64	184,7		455,4		770,8	_	1181	-	1715	2412	_	_	_
100	71,38	103,10			473,2		798,5	935	1221	1426	1766	2479	2920	_	_
105	74,47	107,50	200,5		490,9		826,3	-	1261	-	1826	2546		_	_
110	77,55	112,00					854,1	993		1507		2614	3090	3580	_
115	80,63	116,40					881,8	_	1341	_	1934	2690	_	_	_
120	83,72	120,90			544,2		909,6		1381	1589		2760	3260	3770	4439
125	86,80	125,30				738,5		-	1421	-	2043	2831	-	-	_
130	89,89	129,70	-		579,8		965,2	1110	1461	1670		2903	3430	3960	4635
140		138,60						1168	1541			3045	3600	4150	4832
150	102.2	147,50	271.6	438.1	650.8	850.1	1076							4340	5028
160		156,40						1285			2424	3329	3940	4530	5224
170		165,30			721,9			-	1780	-	2533	3471			
180		174,20					1243	1401		2076		3614	4280	4910	5617
190	126,9	183,10					1299	-	1940	-	2751	3756	-	-	_
200	133,1	191,90			828,6		1354	1517		2239	2860	3898	4620	5290	6010
220	-	209,70			899,6		1465	-	2180	-	3077	4182		_	
240	_	227,50			970,8		1576	_	2340	_	3295	4466	_	_	<u>-</u>
260	_	245,20				1346	1687	_	2500	_	3513	4751	_	_	_
280	_	5,20		759,0		1436	1798	_	2660	_	3730	5035	_	_	_
300	_	_		808,3			1910	_	2820	_	3948	5319	_	_	_

28 Масса шпилек крепежных ряды размеров по ГОСТ 22032-76, (M33, M39) ГОСТ 22033-76 и (M52, M56, и M60) ГОСТ 9066-75

Таблица 19 – Масса шпилек

Длина	та Теоретическая масса 1000 шт. шпилек, кг														
шпиль	•														
ки													L	L	
l, mm	M10	M12	M16	M20	M24	M27	M30	M 33	M36	M39	M42	M48	M52	M56	M60
16	13,52	-	-	-	-	-	-	-	-	-	-	-	-	-	-
18	14,52	-	-	-	-	-	-	-	-	-	-	-	-	-	-
20	15,52	-	-	-	-	-	-	-	-	-	-	-	-	-	-
22	16,76	-	-	-	-	-	-	-	-	-	-	-	-	-	-
25	18,38	28,04	57,50	-	-	-	-	-	-	-	-	-	-	-	-
28	20,00	30,38	61,53	-	-	-	-	-	-	-	-	-	-	-	-
30 32	21,00	31,84 33,92	64,19	-	-	-	-	-	_	-	-	-	-	_	-
35	22,01 23,63	35,64	70,17	_	_	_	_	_	_	_	_	_	_	_	_
38	25,48	37,98	74,41	128,7	_	_	-	_	_	_	_	_		1 -	_
40	26,71	39,43	77,08	132,9	_	_	_	_	_	_	_	_		1 _	
42	27,95	41,42	79,74	139,5	_	_	_	_	_	_	_	_	_	_	_
45	29,80	43,88	83,98	145,4	212.9	_	_	_	_	_	_	_	_	_	_
48	31,65	46,54	87,73	150,3		_	_	_	_	_	-	_	_	_	_
50	32,88	48,31	90,89	161,1	228,4	_	_	_	_	_	-	_	_	_	_
55	35,96	52,75	98,78	171,9		325,4	_	_	-	_	-	_	_	_	_
60	39,04	57,19	106,7	184,2	-	345,4	437,9	_	_	-	-	_	_	_	_
65	42,13	61,63	114,6	196,6		365,3	462,4	-	-	-	-	-	-	-	-
70	45,21	66,07	122,4	208,9	290,6	385,3	486,9	629,2	746,9	-	-	-	-	-	-
75	48,29	70,51	130,3	221,2	308,4	404,0	509,8	655,0	780,2	-	-	-	-	-	-
80	51,37	74,96	138,2	233,6	326,2	426,5	537,6	684,1		1007	1178	1618	-	-	-
85	54,46	79,39	146,1	245,9		448,9	560,4		853,4		1223	1677	-	-	-
90	57,54	83,82	153,0	258,3		471,4	588,2		886,7	1089	1269	1737	-	-	-
95	60,62	88,26	161,9	270,5		493,9	615,9			1130	1319	1803	-	-	-
100	63,70	92,70	169,8	282,9		516,4	643,7		959,9		1366	1865	-	-	-
105	66,79	97,14	177,7	295,2		538,9	671,4	829,3	1000	1216	1413	1926	-	-	-
110	69,87	101,6	185,6	307,5		561,3	699,2	858,4	1039	1253	1460	1988	-	-	-
115	72,95	106,0	193,5	319,9	450,5	583,8	726,9	887,4	1080	1294	1515	2059	-	-	-
120	76,04	110,4	201,4	344,5		606,3	754,7	916,5	1120	1334	1569	2111	-	-	-
130	82,20	119,3	217,2	369,2			810,1		1200	1416	1678	2250	-	-	-
140	88,37	128,2	232,9	393,9		696,2	865,6	1034,2		1487	1786	2392	-	-	-
150 160	94,53	137,1	248,7	416,2			921,1	1092,5		1579 1660	1895 1995	2534 2665	-	_	-
170	100,0 106,2	145,0 153,9	263,0 278,8	440,9 465,5			971,8 1027	1150,7 1208,0			2104	2807	_	_	-
180	112,3	162,8	294,6	490,2		872,2	1027	1266,9			2213	2948	_	_	_
190	112,5	171,7	310,4	514,9		917,1	1138	1325,0		1906	2321	3091	_	-	_
200	124,7	180,5	326,2	564,2		962,1	1194	1383,1		1988	2430	3233	_	_	_
220	-	198,3	357,7	613,5		1052	1305	1497,6		2151	2648	3517	3280	_	_
240	_	-	-	-	891,0	1142	1416	1613,8		2314	2865	3801	3446	_	_
260	_	-	-	-	_	1232	1527	1730,0		2478	3083	4085	3945	4525	_
280	_	-	-	-	_	_	_	1846,0		2641	3300	4369	4280	4910	
300	_	-	-	-	_	_	-	1962,0		2845	3518	4653	4610	5300	6065
370	_	-	-	-	_	-	-		_	-	-	-	5777	6647	7620
390	-	-	-	-	-	_	-	-	_	-	-	-	6107	7035	8065
400	-	-	-	-	-	_	-	-	-	-	-	-	6270	7230	8290
410	-	-	-	-	-	_	_	-	-	-	-	-	6435	7420	8510
420	-	-	-	-	-	-	_	-	-	-	-	-	6600	7610	8730
430	-	-	-	-	-	-	-	-	-	-	-	-	6770	7810	8950
440	-	-	-	-	-	-	-	-	-	-	-	-	6940	8010	9170
450	-	-	-	-	-	-	-	-	-	-	-	-	7110	8200	9390
460	-	-	-	-	-	-	-	-	-	-	-	-	7280	8390	9610
470	-	-	-	-	-	-	_	-	-	-	-	-	7440	8580	10060

29 Масса гаек крепежных и ряд размеров по ГОСТ 5915-70, (М33, М39 М52, М56, М60) по ГОСТ ИСО 4032-2014

30 Масса шайб и ряд размеров по ГОСТ 28961-91

Таблица 20 - Основной размер и масса гаек крепежных

Таблица 21 - Основной размер и масса шайб крепежных

II Macca I	аск крепежных	масса шано крепежных			
Диаметр резьбы гайки Dв, мм	Масса одной гайки, кг	Диаметр шайбы Dв, мм	Масса одной шайбы, кг		
M10	0,010	M10	0,004		
M12	0,016	M12	0,006		
M16	0,038	M16	0,011		
M20	0,072	M20	0,017		
M24	0,123	M24	0,032		
M27	0,176	M27	0,042		
M30	0,242	M30	0,054		
M33	0,288	M33	0,075		
M36	0,417	M36	0,096		
M39	0,502	M39	0,133		
M42	0,624	M42	0,183		
M48	0,956	M48	0,294		
M52	1,121	M52	0,376		
M56	1,450	M56	0,409		
M60	2,080	M60	0,509		

31 Масса неметаллических прокладок для фланцевых соединений аппаратов (по ГОСТ 28759.6-90), работающих под давлением до 6,3 МПа

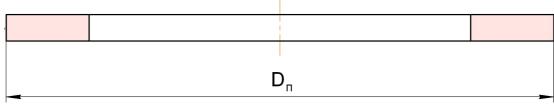


Рисунок 47 – Прокладка неметаллическая

Таблица 22- Основные размеры и масса прокладок

Диаметр		Диаметр	Масса прокладки
D в, мм	Давление р, МПа	прокладки Дп,	Мп, кг
		MM	
	0,3	443	0,068
	0,6	443	0,068
	1,0	457	0,070
400	1,6	457	0,070
	2,5	457	0,070
	4,0	457	0,081
	6,3	457	0,081
	0,3	543	0,083
	0,6	543	0,083
	1,0	563	0,086
500	1,6	563	0,086
	2,5	563	0,086
	4,0	557	0,099
	6,3 0,3	557	0,099
	0,3	643	0,103
	0,6	643	0,103
	1,0	663	0,106
600	1,6	663	0,106
	2,5	663	0,106
	4,0	657	0,121
	6,3	669	0,121
	0,3	743	0,119
	0,6	743	0,119
	1,0	763	0,123
700	1,6	763	0,123
	2,5	763	0,124
	4,0	757	0,140
	6,3	774	0,143

Продолжение таблицы 22

Диаметр		Диаметр	Масса прокладки
D в, мм	Давление р, МПа	прокладки Оп,	Мп, кг
		MM	
	0,3	841	0,135
	0,6	841	0,135
	1,0	865	0,139
800	1,6	865	0,139
	2,5	875	0,141
	4,0	869	0,207
	6,3 0,3	884	0,207
	0,3	951	0,153
	0,6	951	0,153
	1,0	965	0,156
900	1,6	965	0,156
	2,5	977	0,157
	4,0	969	0,227
	6,3	989	0,232
	0,3	1051	0,189
	0,6	1051	0,189
	1,0	1065	0,191
1000	1,6	1065	0,191
	2,5	1079	0,194
	4,0	1074	0,252
	6,3	1094	0,257
	0,3	1247	0,225
	0,6	1247	0,225
	1,0	1267	0,228
1200	1,6	1267	0,228
	2,5	1295	0,241
	4,0	1289	0,428
	6,3	1309	0,435
	0,3	1447	0,378
	0,6	1447	0,378
	1,0	1469	0,397
1400	1,6	1469	0,397
	2,5	1504	0,397
	4,0	1493	0,719
	6,3	1520	0,732

Продолжение таблицы 22

Диаметр		Диаметр	Масса прокладки
D в, мм	Давление р, МПа	прокладки Оп,	Мп, кг
		MM	
	0,3	1646	0,476
	0,6	1646	0,476
	1,0	1680	0,486
1600	1,6	1680	0,486
	2,5	1706	0,494
	4,0	1706	0,839
	6,3	1730	0,851
	0,3	1846	0,535
	0,6	1846	0,535
1800	1,0	1880	0,545
	1,6	1880	0,545
	2,5	1908	0,553
	0,3	2044	0,593
	0,6	2044	0,593
2000	1,0	2084	0,759
	1,6	2084	0,759
	2,5	2114	0,770
	0,3	2244	0,651
2200	0,6	2244	0,651
2200	1,0	2284	0,832
	1,6	2284	0,832
	0,3	2444	0,710
2400	0,6	2444	0,710
2400	1,0	2488	0,907
	1,6	2494	0,910
	0,3	2654	0,993
2600	0,6	2654	0,993
2600	1,0	2693	1,008
	1,6	2697	1,010

32 Масса плоских прокладок для стальных приварных фланцев (ряды размеров по ГОСТ 15180-70) для аппаратов, работающих под давлением до 2,5 МПа

Таблица 23 - Основные размеры и масса плоских прокладок

Диаметр	новные размеры и мас	Диаметр	Масса прокладки
Dy, мм	Давление р, МПа	прокладки Оп,	Мп, 1000шт/кг
Dy, MM	давление р, мита	прокладки <i>Б</i> п, ММ	IVIII, TOOOMIT/KI
	0.2		6
	0,3	69	6
25	0,6	60	6
25	1,0	68	8
	1,6 2,5 0,3	68	8
	2,5	68	8
	0,3	70	7
	0,6	70	7
32	1,0	78	9
	1,6	78	9
	2,5	78	9
	0,3	80	9
	0,6	80	9
40	1,0	88	11
	1,6	88	11
	2,5	88	11
	0,3	90	10
	0,6	90	10
50	1,0	102	14
	1,6	102	14
	2,5	102	14
	0,3	110	14
	0,6	110	14
65	1,0	122	20
	1,6	122	20
	2,5	122	20
	0 3	128	18
	0,3 0,6	128	18
80	1,0	133	22
	1.6	133	22
	1,6 2,5	133	22
	4,5	133	22

Продолжение таблицы 23

Диаметр		Диаметр	Масса прокладки
Dy, мм	Давление р, МПа	прокладки Оп,	Мп, 1000шт/кг
-		MM	
	0,3	148	24
	0,6	148	24
100	1,0	158	35
	1,6	158	35
	1,6 2,5	158	35
	0,3	178	33
	0,6	178	33
125	1,0	184	45
	1,6	184	45
	1,6 2,5	184	45
	0,3	202	34
	0,6	202	34
150	1,0	212	49
	1,6	212	49
	2,5	212	49
	1,6 2,5 0,3	258	49
	0,6	258	49
200	1,0	268	66
	1,6	268	66
	2,5	278	66
	0,3	312	72
	0,6	312	72
250	1,0	320	89
	1,6	320	89
	2,5	335	89
	0,3	365	82
	0,6	365	82
300	1,0	370	98
	1,6 2,5	370	98
	2,5	390	98

33 Масса плоских прокладок для стальных приварных встык фланцев (ряды размеров по ГОСТ 15180-70) для аппаратов, работающих под давлением до 10,0 МПа

Таблица 24 - Основные размеры и масса плоских прокладок

	сновные размеры и мас	•	
Диаметр	Порионно р МПо	Диаметр	Мя 1000 нут/кр
Dy, мм	Давление р, МПа	прокладки Оп,	Мп, 1000шт/кг
	4.0	MM	0.4
2.5	4,0	68	8,4
25	6,3	68	8,4
	10,0	68	8,4
	4,0	78	9
32	6,3	78	9
	10,0	78	9
	4,0	88	11
40	6,3	88	11
	10,0	88	11
	4,0	102	14
50	6,3	102	14
	10,0	102	14
	4,0	122	20
65	6,3	122	20
	10,0	122	20
	4,0	133	22
80	6,3	133	22
	10,0	133	22
	4,0	158	35
100	6,3	158	35
	10,0	158	35
	4,0	184	42
125	6,3	184	42
	10,0	184	42
	4,0	212	49
150	6,3	212	49
	10,0	212	49
	4,0	285	66
200	6,3	285	66
	10,0	285	66
	4,0	345	89
250	6,3	345	89
	10,0	345	89
	4,0	410	98
300	6,3	410	98
	10,0	410	98
	10,0	110	

34 Величины углов α и α_1 для расчета горизонтальной опоры аппаратов

Таблица 25 - Величины углов α , α_1 и α_2

Внутренний	, ,	T7 0-	T 7 0-	1 7 or	
диаметр	Толщина стенки	Угол $lpha$,	Угол α_{1} ,	Угол α_{2} ,	
	аппарата S, мм	градусах	градусах	градусах	
аппарата Dв, мм	aimapara 5, mm				
IVIIVI	6	49,4		20,3	
	8	48,5	_	20,5	
	10		-	, and the second	
400		47,2 46.3	-	21,0	
400	12	46,3	-	20,5	
	14	45,2	-	20,2	
	18	43,3	-	19,5	
	22	41,5	-	18,9	
	8	44,1	-	21,7	
	10	43,3	-	21,6	
500	12	42,5	-	21,3	
	16	41,0	-	20,5	
	22	39,5	-	19,8	
	25	38,0	-	19,2	
	8	46,5	-	21,8	
	10	45,7	-	21,6	
	12	45,0	-	21,3	
600	16	43,6	-	20,8	
	20	42,3	-	20,3	
	25	41,0	-	19,7	
	30	39,5	-	19,2	
	8	48,1	-	22,1	
	10	47,5	-	22,0	
	12	46,8	-	21,8	
700	14	46,1	-	21,7	
700	16	45,5	-	21,3	
	22	43,8	-	20,7	
	28	42,2	-	20,1	
	34	40,7	-	19,3	
	8	49,5	-	22,2	
	10	48,8	-	21,9	
	12	48,1	-	21,7	
000	16	47,0	_	21,3	
800	20	46,0	_	20,9	
	25	44,6	_	20,4	
	30	43,4	_	20,0	
	38	41,6	_	19,4	

Продолжение таблицы 25

Внутренний		Угол $lpha$,	Угол α _{1,}	Угол $lpha_{2,}$
диаметр	Толщина стенки	градусах	градусах	градусах
аппарата Вв,	аппарата S , мм	1 / 0	1 / 5	1 / 0
MM				
	8	51,1	-	-
	10	50,8	-	-
	12	50,2	-	-
900	16	49,1	-	-
900	20	48,0	-	-
	30	45,6	-	-
	34	44,7	-	-
	38	44,4	-	-
	8	51,3	-	-
	10	50,8	-	-
	12	50,3	-	-
1000	18	48,6	-	-
1000	22	48,9	-	-
	25	47,1	-	-
	38	44,4	-	-
	45	43,1	-	-
	8	53,4	-	-
	10	53,0	-	-
	12	52,5	-	-
	14	52,3	-	-
1200	20	50,7	-	-
	25	49,6	-	-
	34	47,8	-	-
	45	45,8	-	-
	55	44,2	-	-
	8	53,7	-	-
	10	53,3	-	-
	14	52,4	_	_
1.400	20	51,2	_	_
1400	28	49,7	_	_
	38	48,0	_	_
	50	46,1	_	_
	60	44,7	-	_

Продолжение таблицы 25

Внутренний диаметр аппарата Dв, мм	Толщина стенки аппарата S, мм	Угол α , градусах	Угол α_1 , градусах	Угол α ₂ , градусах	
MM	10	54,0			
	16		_	-	
	22	53,0 51,9	_	-	
1600	32	50,2	_	_	
	45	48,3	_	_	
	55	46,8	_	-	
	10	54,7	_	-	
1800	16	53,7	_	-	
1000	22	ĺ	_	-	
	10	52,7 55,3	24,3	_	
	10			-	
2000	16	54,9 54.3	24,1	-	
2000	18	54,3	24,0	-	
	22	54,0 53.4	23,8	_	
	10	53,4	23,6	-	
	10	55,7	26,7	-	
2200	18	55,5	26,6	-	
	20	54,4	26,4	_	
		54,2	26,3	-	
	10	56,0	29,0	-	
2400	12	55,8	28,9	_	
	18	54,9 54.7	28,6	_	
	20	54,7	28,5	-	
	10	56,4	31,0	-	
2600	12	56,3	30,9	_	
	18	55,6	30,6	-	
	22	55,1	30,5	-	

35 Масса стальных приварных встык отводов крутоизогнутых для труб (ряды размеров по ГОСТ 17375-2001)

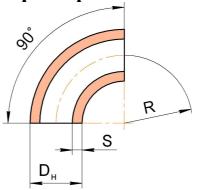


Рисунок 48 – Отвод крутоизогнутый приварной встык

Таблица 26 - Основные размеры и масса отводов крутоизогнутых

Таолица 20 - О	сновные размерь	и масса отводо	ОГНУТЫХ			
Условный	Диаметр	Толщина	Радиус	Масса отвода		
диаметр отвода	наружный	стенки	отвода	крутоизогнутого		
dy, мм	отвода Dн, мм	отвода S, мм	R, мм	приварного Мок, кг		
		2,0		0,04		
15	21,3	3,2	28	0,06		
		4,0		0,07		
		2,0		0,06		
20	26,9	3,2	29	0,08		
		4,0		0,10		
		2,3		0,11		
25	33,7	3,2	38	0,16		
		4,5		0,19		
		2,6		0,19		
32	42,4	3,6	48	0,26		
		5,0		0,35		
		2,6		0,26		
40	48,3	3,6	57	0,36		
		5,0		0,47		
		5,0 2,9		0,50		
50	60,3	4,0	76	0,67		
		5,6		0,87		
		2,9		0,79		
65	76,1	5,0	95	1,50		
		7,1 3,2		1,80		
		3,2		1,20		
80	88,9	5,6	114	2,10		
		8,0		2,80		
		3,6		2,40		
100	114,3	6,3	152	4,00		
		8,8		5,40		

Приложение А

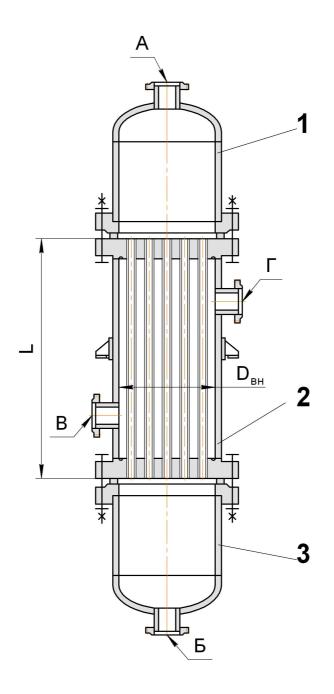
(рекомендуемая) Форма и пример заполнения титульного листа

МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования

«Санкт-Петербургский государственный технологический институт (технический университет)»

Направление подготовки	18.03.01 (химич	еская технология)					
Направленность	"Химическая технология тугоплавких неметаллических и силикатных материалов" Механический Инженерного проектирования Инженерная графика						
Факультет							
Кафедра							
Учебная дисциплина							
Kypc1	Группа						
	КУРСОВАЯ РАБОТА	A					
Тема:							
Студент							
	(подпись, дата)	(инициалы, фамилия)					
Руководитель,							
должность	(подпись, дата)	(инициалы, фамилия)					
Оценка за курсовую	(подпись, дата)	(инициалы, фамилия)					
	Санкт-Петербург 20 г.						


Приложение Б пример технического задания

Техническое задание 1.

Спроектировать стальной вертикальный кожухотрубчатый холодильник-конденсатор для охлаждения водой газообразного метанола.

Выполнить:

- 1. Чертеж общего вида аппарата на стадии технического проекта.
- 2. Произвести расчет массы сухого аппарата.
- 3. Выполнить расчет объемов трубного и межтрубного пространства аппарата. Ниже приведено схематичное изображение аппарата в исполнении 1.

Продолжение приложения Б

Устройство аппарата.

Конденсатор представляет собой совокупность сборочных единиц: корпуса 2, верхней крышки 1 и нижней крышки 3. Корпус состоит из сварной цилиндрической обечайки, внутри которой размещается пучок труб. Трубы закрепляются в трубных решетках вальцеванием, а трубные решетки привариваются к торцам обечайки. Корпус 2 (давление **Рмт**) снабжен двумя штуцерами **В** (для ввода воды в межтрубное пространство) и **Г** (вывода воды). Конденсатор устанавливается в вертикальном положении с помощью опор (лап), которые также как и штуцеры крепятся к обечайке сваркой.

Крышки аппарата 1 и 3 состоят из цилиндрических обечаек, к торцам которых приварены днища и фланцы.

Верхняя крышка 1 снабжена штуцером **A** (ввод водяного пара), нижняя крышка 3 штуцером **Б** (вывод конденсата). Давление в трубном пространстве **Рт**. Штуцеры соединены с крышками с помощью сварки.

Принцип действия аппарата.

Газообразный метанол с температурой $t=150\,^{\circ}\mathrm{C}$ непрерывно поступает в холодильник-конденсатор через штуцер \mathbf{A} и, проходя по трубам, размещенным в трубных решетках, конденсируется. Конденсат метанола (жидкий метанол) отводится из аппарата через штуцер \mathbf{b} . Конденсация метанола осуществляется за счет поглощения тепла через стенки труб холодной водой, подводимой через штуцер \mathbf{b} . Вода отводится через штуцер $\mathbf{\Gamma}$.

Технические характеристики.

Основные технические характеристики аппарата приведены в таблице ниже.

Дополнительные указания.

Фланцы крышек 1 и 3 крепятся к трубным решеткам корпуса 2 холодильника-конденсатора с помощью болтов.

Асполне- ние	Dı	B, MM		Рт, МПа		мт, Па	L ,мм		A, dy, mm		Б, dy, мм		B, dy, mm		г, dy, мм	
1	1	400	1	0,3	1	0,3	1	1200	1	80	1	80	1	100	1	100

Литература

- 1 Машины и аппараты химических производств: примеры и задачи/ под ред. В.Н. Соколова. Л.: Машиностроение, 1982. 384 с.
- 2 Процессы и аппараты химической промышленности / под ред. П.Г. Романкова. Л.: Химия, 1989.-560 с.
- 3 Расчет и конструирование машин и аппаратов химических производств: Примеры и задачи: учеб. пособие для студентов вузов / М.Ф. Михалев [и др.]; под общ ред. М.Ф. Михалева. Л.: Машиностроение, 1984. 301 с.
- 4 Лащинский, А.А. Конструирование сварных химических аппаратов: справочник/А.А. Лащинский Л.: Машиностроение. Ленинградское отделение, 1981.-382 с.
- 5 Анурьев, В.И. Справочник конструктора-машиностроителя: В 3-х т/В.И. Анурьев М.: Машиностроение, 1982. 584 с.

СОДЕРЖАНИЕ

Введение	3
1 Структура пояснительной записки	4
1.1 Требования по оформлению пояснительной записки	4
2 Титульный лист	7
3 Техническое задание	7
4 Содержание	8
5 Введение	8
6 Теоретические основы процесса	8
7 Определение размеров составных частей аппарата	8
8 Расчет массы	9
8.1 Расчет массы аппарата теплообменного горизонтального, работающего	
под избыточным давлением	9
8.2 Расчет массы аппарата теплообменного вертикального, работающего под избыточным давлением	16
8.3 Расчет массы монжуса горизонтального, работающего под избыточным давлением	18
8.4 Расчет массы монжуса вертикального, работающего под избыточным давлением	22
8.5 Расчет массы сборника вертикального для суспензии (с барботером),	
работающего под избыточным давлением	24
8.6 Расчет массы аппарата газлифтного вертикального, работающего под избыточным давлением	28
9 Расчет номинального объема аппарата	33
9.1 Основные формулы для расчета объема химических аппаратов	33
9.2 Пример вычисления объема теплообменного аппарата	37
10 Заключение	39
11 Масса цилиндрических вальцованных оболочек (ряды диаметров по	
ГОСТ 9617-76) для аппаратов, работающих под избыточным давлением	40
12 Масса эллиптических отбортованных стальных днищ (ряды размеров по	
ГОСТ 6533-78) для аппаратов, работающих под избыточным давлением	
до 10 МПа	44
13 Масса конических отбортованных стальных днищ, α =60° (ряды	
размеров по ГОСТ 12619-78) для аппаратов, работающих под	
избыточным давлением до 2,5 МПа	47
14 Масса конических отбортованных стальных днищ, α =90° (ряды	
размеров по ГОСТ 12619-78) для аппаратов, работающих под	
избыточным давлением до 2,5 МПа	51
15 Масса сферических неотбортованных стальных днищ, (по ГОСТ 52630-	
2006) для аппаратов, работающих под избыточным давлением до 1,6 МПа	55
16 Масса конических неотбортованных стальных днищ, $\alpha = 60^{\circ}$ (ряды	
размеров по ГОСТ 12620-78) для аппаратов, работающих под наливом	58
17 Масса конических неотбортованных стальных днищ, $\alpha = 90^{\circ}$ (ряды	
размеров по ГОСТ 12620-78) для аппаратов, работающих под наливом	60

18 Масса конических неотбортованных стальных днищ, α =120° (ряды	
размеров по ГОСТ 12620-78) для аппаратов, работающих под наливом	62
19 Масса стальных приварных фланцев для обечаек аппарата (ряды	
размеров по ГОСТ 28759.2-90) для аппаратов, работающих под давлением	
до 1,6 МПа	64
20 Масса стальных приварных фланцев с выступом и впадиной для обечаек	
аппарата (ряды размеров по ГОСТ 28759.3-90) для аппаратов,	
работающих под давлением до 1,6 МПа	66
21 Масса стальных приварных фланцев под металлическую прокладку для	
обечаек аппарата (ряды размеров по ГОСТ 28759.4-90) для аппаратов,	
работающих под давлением до 10 МПа	68
22 Масса стальных металлических прокладок для фланцевых соединений	
аппарата (ряды размеров по ГОСТ 28759.8-90) для аппаратов,	
работающих под давлением до 10 МПа	69
23 Масса стальных труб, (ряды диаметров по ГОСТ 8732-75) для аппаратов,	
работающих под избыточным давлением до 2,5 МПа	70
24 Масса стальных труб, (ряды диаметров по ГОСТ 8732-75) для аппаратов,	
работающих под избыточным давлением до 10 МПа	71
25 Масса стальных приварных фланцев для труб (ряды размеров по ГОСТ	
12820-80) для аппаратов, работающих под давлением до 2,5 МПа	72
26 Масса стальных приварных встык фланцев для труб (ряды размеров по	
ГОСТ 12821-80) для аппаратов, работающих под давлением до 10 МПа	74
27 Масса болтов крепежных ряды размеров по ГОСТ 15589-70, (М33, М39,	
М52, М 56, М60) по ГОСТ50793-95 (ИСО 4017-880)	76
28 Масса шпилек крепежных ряды размеров по ГОСТ 22032-76, (М33, М39)	
ГОСТ 22033-76 и (М52, М56, и М60) ГОСТ 9066-75	77
29 Масса гаек крепежных и ряд размеров по ГОСТ 5915-70, (М33, М39 М52,	
М56, М60) по ГОСТ ИСО 4032-2014	78
30 Масса шайб и ряд размеров по ГОСТ 28961-91	78
31 Масса неметаллических прокладок для фланцевых соединений аппаратов	
(по ГОСТ 28759-90), работающих под давлением до 6,3 МПа	79
32 Масса плоских прокладок для стальных приварных фланцев (ряды	
размеров по ГОСТ 15180-70) для аппаратов, работающих под давлением	
до 2,5 МПа	82
33 Масса плоских прокладок для стальных приварных встык фланцев (ряды	
размеров по ГОСТ 15180-70) для аппаратов, работающих под давлением	
до 10,0 МПа	84
34 Величины углов α и α_1 для расчета горизонтальной опоры аппаратов	85
35 Масса стальных приварных встык отводов крутоизогнутых для труб	
(ряды размеров по ГОСТ 17375-2001)	88
Приложение А Форма и пример заполнения титульного листа	89
Приложение Б Пример технического задания	90
Питепатура	92

Кафедра инженерного проектирования

Учебное пособие

ОФОРМЛЕНИЕ ПОЯСНИТЕЛЬНОЙ ЗАПИСКИ ПРИ ВЫПОЛНЕНИИ ЧЕРТЕЖА ХИМИЧЕСКОГО АППАРАТА НА СТАДИИ ТЕХНИЧЕСКОГО ПРОЕКТА

Екатерина Николаевна Булина Алексей Васильевич Ермолаев Евгений Анатольевич Пономаренко

Отпечатано с оригинал- макета. Формат $60 \times 90 \frac{1}{16}$

Печ. л. 6,0 Тираж экз. Заказ №

Санкт- Петербургский государственный технологический институт (технический университет)

190013, Санкт-Петербург, Московский пр.,26 Типография издательства СПбТИ(ТУ)