Лабораторная работа

Моделирование аналоговых сигналов и расчет их характеристик

1 Теоретические сведения

Как правило, для обработки на цифровых вычислителях непрерывный сигнал заменяется набором отсчетов — набором значений в конкретные моменты времени. Отсчеты берутся с равным временным шагом, называемым периодом дискретизации Δt :

$$S_i = S(i\Delta t)$$

Чем меньше период дискретизации, тем более точно можно воспроизвести сигнал, однако в таком случае возрастают затраты памяти, и становится сложнее производить над ним различные операции.

Рассмотрим рисунок 1.

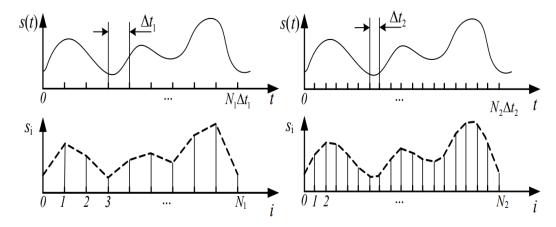


Рисунок 1 – Представление сигнала набором отсчетов

Как видно из рисунка 1 один и тот же сигнал сначала записан с периодом дискретизации Δt_1 , а затем с периодом дискретизации Δt_2 . Как видно, во втором случае сигнал можно воспроизвести точнее, однако количество отсчетов, а, следовательно, и объем затрачиваемой на обработку памяти увеличилось.

При использовании в цифровой технике операции над аналоговыми сигналами заменяются их эквивалентами над наборами отсчетов.

В таблице 1 приведем наиболее часто встречаемые операции и способ их приближенного вычисления.

Таблица 1 – Операции над сигналами

Операция	Запись	Приближенное вычисление
Интегрирование	$I = \int_{t_1}^{t_2} s(t) dt$	$I = \Delta t \sum_{i=0}^{N-1} \frac{s_i + s_{i+1}}{2}$
Дифференцирование	$g\left(t\right) = \frac{ds(t)}{dt}$	$g_i = \frac{s_{i+1} - s_i}{dt}$
Вычисление среднего значения	$\overline{s} = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} s(t) dt$	$\bar{s} = \frac{1}{N} \sum_{i=0}^{N-1} s_i$
Вычисление энергии	$E = \int_{t_1}^{t_2} s^2(t) dt$	$E = \Delta t \sum_{i=0}^{N-1} s_i^2$
Вычисление средней мощности	$P = \frac{1}{t_2 - t_1} \int_{t_1}^{t_2} s^2(t) dt$	$P = \frac{1}{N} \sum_{i=0}^{N-1} s_i^2$

2 Цель работы

Получение основных навыков моделирования сигналов в современных средах компьютерной математики.

- 3 Порядок выполнения работы
- 1. Получить у преподавателя карточку с вариантом задания.
- 2. Вычислить аналитически все операции над сигналом приведенные в таблице 1.
- 3. Смоделировать с использованием вычислительной техники анализируемый сигнал.
- 4. Вычислить те же характеристики сигнала, которые были получены аналитически при помощи приближенных методов, приведенных в таблице 1.
- 5. Экспериментально подобрать такой период дискретизации, при котором ошибка расчета всех характеристик (кроме среднего значения) не превышает 1%