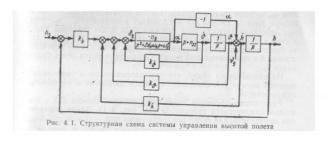
КОНТРОЛЬНАЯ РАБОТА

Целью контрольной работы является исследование САУ высотой полёта. Для выполнения контрольной работы следует использовать печатные издания 1 и 2 [Л1, Л2] из списка литературы в программе дисциплины.

Структурная схема системы представлена на рис. 4.1. [Л1]. Исходные данные для расчёта коэффициентов САУ соответствуют параметрам продольного канала ЛА и берутся:


- 1) из табл. 1.1, где тип самолёта определяется по первой букве фамилии студента: А–Д лёгкий самолёт, Е–П средний самолёт, Р–Я тяжёлый самолёт; высота полёта задаётся второй буквой фамилии: А–Н –первый столбец параметров самолёта, П–Я –второй столбец (столбец «Н=12 км» для тяжёлого самолёта не используется);
- 2) из табл. 4.1 (см. далее) по третьей букве фамилии: A–Д «близость частотных характеристик»; E– Π «стандартные коэффициенты»; P–S «кратные корни».

Требуется:

- 1) рассчитать коэффициенты (передаточные числа) автопилота;
- 2) проверить систему на устойчивость;
- 2) определить статическую ошибку относительно управляющего h_3 воздействия.

Коэффи- инсит	Легкий самолет		Средний самолет		Тяжелый самолет		
	H=11 κM M=0,9 τ _a =3,8 c	H = 15 kM M = 2, 5 $\tau_a = 2, 5 \text{ c}$	H=0 (посадка)	H=4 κм M=0,65 τ _a =2,9c	H=0 (посад- ка)	$H-8 \text{ km} - M=0.8 \text{ t}_{a}=2.5 \text{ c}$	H=12 κs M=0.9 τ _a =3 c
n_{11} n_{12} n_{13} n_{14} n_{21} n_{22} n_{23} n_{24} n_{31} n_{0} n_{32} n_{33} n_{34} n_{8} n_{3}	$ \begin{vmatrix} 0,024 \\ -0,11 \\ 0,2 \\ -0,0004 \\ -0,4 \\ 2,4 \\ 0 \\ -0,012 \\ 0 \\ 0,4 \\ 38 \\ 2,45 \\ -0,053 \\ 49 \\ 0,022 \end{vmatrix} $	$\begin{array}{c} -0.01 \\ -0.08 \\ 0.2 \\ -0.0004 \\ -0.68 \\ 2.5 \\ 0 \\ -0.013 \\ -0.8 \\ 0.7 \\ 16 \\ 2.2 \\ -0.055 \\ 100 \\ 0.02 \\ \end{array}$	$\begin{array}{c} 0,12 \\ -0,28 \\ 0,4 \\ -0,8 \\ 2,4 \\ 0,02 \\ \hline 0 \\ 0,59 \\ 6,6 \\ 1,67 \\ \hline -15,2 \\ 0,019 \\ \end{array}$	0,019 0,02 0,3 -0,00044 -0,6 2,66 0 -0,013 0 0,6 10,6 1,7 -0,055 24,5 0,021	0,12 -0,12 0,3 -0,65 2,35 0,015 -0 0,9 8 2,35 -0,018	0,026 -0,025 0,1 -0,0004 -0,36 3 0 -0,011 0 1,17 4,2 2,5 -0,05 28 0,02	0,048 $-0,079$ $0,17$ $-0,000$ $-0,68$ $2,4$ 0 $-0,012$ $-1,2$ $0,68$ 36 $2,42$ $-0,05$ 46 $0,02$

Методические указания

Рассмотрим процессы управления высотой полета ЛА с помощью статического автопилота (см. рис. 4.1). Закон управления автопилота, как видно из схемы, имеет вид $\delta_{\mathrm{B}} = (k_{\mathrm{A}} + k_{\mathrm{A}} p) h + (k_{\mathrm{B}} + k_{\mathrm{B}} p) \vartheta - k_{\mathrm{A}} h_{\mathrm{B}}.$ В дальнейшем будем полагать, что элементы системы управления не имеют динамических погрешностей. Такое предположение реализуется легко, поскольку движение центра масс является медленным. Возьмем уравнение "ЛА в виде (1.21), полагая скорость полета постоянной. Исключая из уравнений (1.21) и (4.1) деремению 6. получим. (4.1) переменную δ_в, получим: $\Delta(p) \vartheta = (b_0 p + a_4) p h_3 + F_1;$ $\Delta(p)h = \alpha_4 h_3 + F_2,$ $a_1\!=\!c_1\!+n_{\rm s}k_{\hat{\theta}};\quad a_2\!=\!c_2\!+n_{\rm s}\,(k_{\hat{\theta}}\!+\!n_{22}k_{\hat{\theta}});$ $a_3 = n_n n_{22} (k_b + k_h); \quad a_4 = n_n n_{22} k_h;$ а величины F_1 и F_2 — внешние возмущения, вызванные факторами f_2 , f_3 и v_p [см. уравнения (1.21)]. Устойчивость системы (4.2) следует из неравенства (4.3) $a_3(a_1a_2-a_3)-a_1^2a_4>0,$ а критический коэффициент усиления k_h будет $k_{b} = (k_{b} + k_{b}^{*}) \left[\frac{c_{2} + n_{a}(k_{b} + n_{22}k_{b}^{*})}{n_{a}n_{22}(k_{b} + k_{b}^{*})} - \frac{n_{a}n_{22}(k_{b} + k_{b}^{*})}{n_{a}n_{22}(k_{b} + k_{b}^{*})} \right]$ $(c_1 + n_b k_b)$ $c_1 + n_B k_B$ Из выражения (4.4) видно, что для увеличения коэффициента k_h необходимо увеличивать коэффициенты k_h , k_b и k_b . Следу-

т заметить, что управлять высотой полета без сигналов угла и гловой скорости тангажа невозможно. Это, в частности, следует из выражения (4.4), если в нем положить k_b и $k_b = 0$. При этом сигнал угловой скорости необходим для демифирования угловых движений, а сигнал угла — для демифирования движений дентра масс.
Передаточные числа системы управления высотой полета бу-дем выбирать из условий получения заданного переходного про-цесса. Для этого потребуем, чтобы передаточная функция по управляющему сигналу $W_{h}\left(p\right) \!=\! \frac{a_{4}}{p^{4}+a_{1}p^{3}+a_{2}p^{2}+a_{3}p+a_{4}}$ совпадала со стандартной передаточной функцией 04 $W_0(p) = \frac{\omega^4}{p^4 + A_1 \Omega p^3 + A_2 \Omega^2 p^2 + A_3 \Omega^3 p + \Omega^4},$ (4.6)где A_1, A_2, A_3 и Ω — заданные величины. В табл. 4.1 даны значения величин A_1, A_2 и A_3 для случаев близости частотных характеристик, стандартных коэффициентов и кратных корней. Что касается частоты О. то она определяет время регулиро-Таблина 4.1 Рассматриваемый случай A_2 A_2 Близость частот-ных характери-стик.... 2.62 3,08 2,62 Стандартные ко-3.41 4.24 3.41 Кратные корни. 6 Из сравнения коэффициентов передаточных функций (4.5) и (4.6) получаем выражения для передаточных чисел: $k_h\!=\!\frac{\Omega^4}{n_{\rm B}n_{22}}\;;\;k_{\stackrel{\star}{h}}\!=\!\frac{1}{n_{\rm B}n_{22}}\big[A_{\rm B}\Omega^3\!-\!A_{\rm B}\Omega^2n_{\rm BB}\!+\!A_{\rm B}\Omega n_{22}^2\!+\!n_{\rm BB}(c_{\rm B}\!-\!c_{\rm B}n_{\rm BB})\big];$ $k_b = \frac{1}{n_a} (A_2 \Omega^2 - c_2 + c_1 n_{22} - A_1 \Omega n_{22}); \quad k_b = \frac{1}{n_a} (A_1 \Omega - c_1).$

где $c_1=5,5$; $c_2=42$; $\Omega=4$.

Проверка системы на устойчивость производится по (4.3), для чего необходимо рассчитать и сравнить с нулём левую часть неравенства.

Статическая ошибка относительно управляющего (задающего) воздействия h_3 определяется как отклонение от единицы выходной величины h при h_3 =1 . (h при h_3 =1 определяются из (4.6) при подстановке p=0).

Пример.

Пусть уравнение САУ имеет вид

$$(T_0p^3+T_0p^2+p+1)$$
 h= (T_1p+1) h₃.

Тогда статическая ошибка относительно управляющего воздействия будет равна $\varepsilon=1-|h_1|$,

где h_1 определяется из уравнения (подстановка p=0)

$$(T_00^3+T_00^2+0+1)$$
 h₁= (T_10+1) 1.