## Методические указания по выполнению контрольных работ

В течение семестра каждый студент должен выполнить одну контрольную работу. По результатам ее выполнения оценивается усвоение студентом программного материала. Номер варианта контрольной работы соответствует порядковому номеру студента в списке группы. Каждый вариант контрольной содержит вопросы и задачи по основным разделам дисциплины кроме отдельных подразделов, рассмотрение которых предусмотрено во время выполнения курса лабораторных работ.

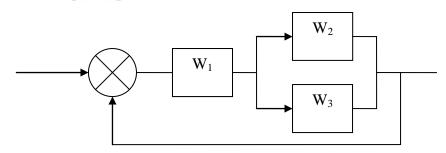
При выполнении контрольных работ, связанных с компьютерным моделированием САУ, может быть, в частности, использовано учебное пособие

- Мироновский Л.А., Петрова К.Ю. Введение в Matlab. Учеб.пособие. ГУАП. СПб, 2006, 163 с., [004.932(075)/М64] кол-во экземпляров – 200;

Перед каждым ответом должен быть приведен вопрос. Рекомендуется делать ссылки на используемую литературу. Анализ устойчивости системы осуществляется с помощью любого алгебраического или частотного критерия. По возможности следует провести проверку расчетов по устойчивости и точности с помощью моделирования в Matlab (Simulink).

## Варианты контрольных работ

вариант 1


- 1. Известно дифференциальное уравнение, описывающее динамическое звено:  $\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 4y = \frac{du}{dt} + 2u$ . Найти передаточную функцию звена W(p).
- 2. Имеется интегрирующее звено с передаточной функцией  $W(p) = \frac{10}{p}$ . На вход звена поступает сигнал вида  $x(t) = \sin t$ . Найти вид сигнала на выходе звена.

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink

3. Известна передаточная функция динамического звена:  $W(p) = \frac{8}{p(1+2p)}$ . Найти комплексную частотную передаточную функцию, амплитудночастотную и фазо-частотную характеристики звена Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

4. Известна передаточная функция динамического звена: 
$$W(p) = \frac{8}{p(1+0,2p)} \,. \,\, \text{Построить асимптотическую ЛАХ}.$$

- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{p}{(1+p)(1+2p)}.$  Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ.



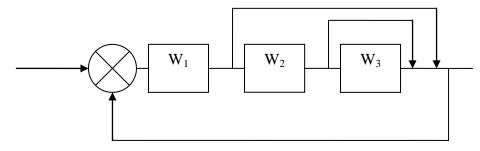
Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{5}{1+p}, W_2(p) = \frac{2}{p}, W_3 = \frac{p}{1+0.2p}$ .

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{8}{p(1+0,2p)(1+5p)} \,. \label{eq:Wp}$  Определить, устойчива ли замкнутая система.

Анализ устойчивости системы осуществляется с помощью любого известного алгебраического или частотного критерия. Проверку расчетов следует провести с помощью моделирования в Simulink.

8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{8}{p(1+0,2p)(1+5p)}$ . Определить установившуюся ошибку системы, если

на ее вход подается задающее воздействие вида g(t) = 2t.


Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{4}{p(1+0,2p)(1+5p)}.$  Определить запасы устойчивости системы по фазе и по амплитуде.

- 1. Известно дифференциальное уравнение, описывающее динамическое звено:  $\frac{d^3y}{dt^3} + 2\frac{dy}{dt} + 5y = 2\frac{du}{dt}$ . Найти передаточную функцию звена W(p).
- 2. Имеется интегрирующее звено с передаточной функцией  $W(p) = \frac{1}{p}$ . На вход звена поступает сигнал вида  $x(t) = \cos 0,1t$ . Найти вид сигнала на выходе звена

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink

- 3. Известна передаточная функция динамического звена:  $W(p) = \frac{p}{(1+p)(1+2p)}.$  Найти комплексную частотную передаточную функцию, амплитудно-частотную и фазо-частотную характеристики звена. Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{8}{p(1+0,2p)}$ . Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ.



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{2}{1+p}$ ,  $W_2(p) = \frac{0.8p}{1+0.2p}$ ,  $W_3 = \frac{3}{p}$ .

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{1+p}{p(1+3p)(1+2p)} \,. \, \text{Определить, устойчива ли замкнутая система.}$ 

Анализ устойчивости системы осуществляется с помощью любого известного алгебраического или частотного критерия. Проверку расчетов следует провести с помощью моделирования в Simulink.

8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{1+p}{p(1+3p)(1+2p)} \,.$  Определить установившуюся ошибку системы, если на ...

ее вход подается задающее воздействие вида g(t) = 1 + t. Расчет установившейся ошибки системы производится аналитически.

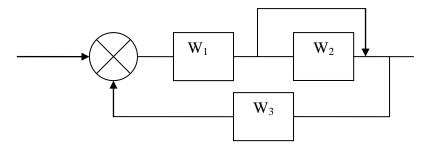
Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{1+p}{p(1+3p)(1+2p)} \,.$  Определить запасы устойчивости системы по фазе и по амплитуде.

- 1. Известно дифференциальное уравнение, описывающее динамическое звено:  $2\frac{d^2y}{dt^2} + \frac{dy}{dt} = 4\frac{du}{dt} + u$ . Найти передаточную функцию звена W(p).
- 2. Имеется интегрирующее звено с передаточной функцией  $W(p) = \frac{1}{2p}$ . На вход звена поступает сигнал вида x(t) = 4t. Найти вид сигнала на выходе звена.

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink

3. Известна передаточная функция динамического звена:  $W(p) = \frac{5}{p^2(1+0.1p)}$ . Найти комплексную частотную передаточную функцию,


амплитудно-частотную и фазо-частотную характеристики звена.

Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 4. Известна передаточная функция динамического звена:  $W(p) = \frac{8(1+0.5p)}{p(1+0.1p)(1+p)} \,.$  Построить асимптотическую ЛАХ.
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{5}{p^2(1+0.1p)}$ . Получить описание звена в пространстве состояний (в

канонической форме и в векторно-матричной форме).

6. Дана структурная схема САУ.



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{1}{2(1+0,1p)}, W_2(p) = \frac{2p}{1+0,2p}, W_3 = 4$ .

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{5}{n^2(1+0.1n)}$ . Определить, устойчива ли замкнутая система.

8. Известна передаточная функция разомкнутого контура:

$$W(p) = \frac{5}{p^2(1+0.1p)}$$
. Определить установившуюся ошибку системы, если на ее

вход подается задающее воздействие вида  $g(t) = 2 + t^2$ .

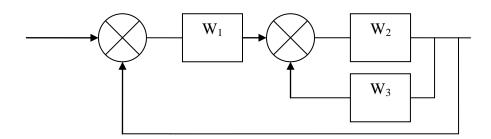
Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:

$$W(p) = \frac{5+p}{p^2(1+0.1p)}$$
. Определить запасы устойчивости системы по фазе и по

амплитуде.

- 1. Известно дифференциальное уравнение, описывающее динамическое звено:  $3\frac{d^4y}{dt^4} + 2\frac{d^2y}{dt^2} + 5y = \frac{d^2u}{dt^2} + \frac{du}{dt} + 2u$ . Найти передаточную функцию звена W(p).
- 2. Имеется интегрирующее звено с передаточной функцией  $W(p) = \frac{3}{p}$ . На вход звена поступает сигнал вида  $x(t) = e^{-2t}$ . Найти вид сигнала на выходе звена.


Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink

3. Известна передаточная функция динамического звена:  $W(p) = \frac{2+p}{(1+p)(1+5p)} \,.$  Найти комплексную частотную передаточную функцию,

амплитудно-частотную и фазо-частотную характеристики звена.

Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 4. Известна передаточная функция динамического звена:  $W(p) = \frac{5}{p^2(1+0.1p)} \,. \,$  Построить асимптотическую ЛАХ.
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{2+p}{(1+p)(1+0.25p)}$ . Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ:



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{1}{1+0,1p}, W_2(p) = \frac{2}{1+p}, W_3 = 1,5$ 

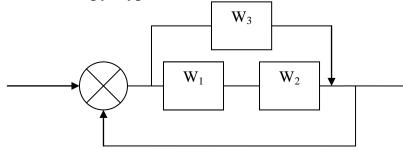
7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{2+p}{p^2(1+p)(1+0.25p)} \,. \, \text{Определить, устойчива ли замкнутая система/}$ 

8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{2+p}{p^2(1+p)(1+0.25p)} \,. \label{eq:Wp}$  Определить установившуюся ошибку системы, если

на ее вход подается задающее воздействие вида  $g(t) = 0.5t^2$ .

Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{2+p}{p(1+p)(1+0,25p)}.$  Определить запасы устойчивости системы по фазе и по амплитуде.


- 1. Известно дифференциальное уравнение, описывающее динамическое звено:  $\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 3\frac{dy}{dt} + 2y = 3u$ . Найти передаточную функцию звена W(p).
- 2. Имеется интегрирующее звено с передаточной функцией  $W(p) = \frac{5}{p}$ . На вход звена поступает сигнал вида  $x(t) = 1 e^{-t}$ . Найти вид сигнала на выходе звена.

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink

3. Известна передаточная функция динамического звена:  $W(p) = \frac{8(1+2p)}{p(1+0,3p)(1+p)}.$  Найти комплексную частотную передаточную

функцию, амплитудно-частотную и фазо-частотную характеристики звена. Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{8}{p(1+0.3p)(1+p)}$ . Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ:



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_{\rm e}(p)$ , если  $W_1(p)=\frac{2\,p}{1+0.2\,p}, W_2(p)=\frac{2\,p}{p}, W_3=5\,p$  .

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{8}{p(1+0,3p)(1+p)} \,. \label{eq:Wp}$  Определить, устойчива ли замкнутая система.

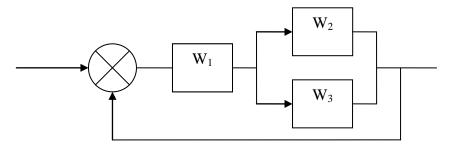
Анализ устойчивости системы осуществляется с помощью любого известного алгебраического или частотного критерия. Проверку расчетов следует провести с помощью моделирования в Simulink.

8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{8}{p(1+0.3p)(1+p)}$ . Определить установившуюся ошибку системы, если на ее вход подается задающее воздействие вида g(t) = 3t + 1.

Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{1,8}{p(1+0,3p)(1+p)}$ . Определить запасы устойчивости системы по фазе и по амплитуде.

- 1. Известно дифференциальное уравнение, описывающее динамическое звено:  $\frac{d^3y}{dt^3} + 8\frac{d^2y}{dt^2} + \frac{dy}{dt} = u$ . Найти передаточную функцию звена W(p).
- 2. Имеется апериодическое звено с передаточной функцией  $W(p) = \frac{10}{1+2p}$ .


На вход звена поступает сигнал вида  $x(t) = \sin t$ . Найти вид сигнала на выходе звена.

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink

3. Известна передаточная функция динамического звена:  $W(p) = \frac{10p}{(1+0.2p)(1+0.5p)}.$  Найти комплексную частотную передаточную

функцию, амплитудно-частотную и фазо-частотную характеристики звена. Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 4. Известна передаточная функция динамического звена:  $W(p) = \frac{8(1+0.1p)}{p(1+0.3p)(1+p)} \,.$  Построить асимптотическую ЛАХ.
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{10p}{(1+0.2p)(1+0.5p)}.$  Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ.



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{5p}{1+0.1p}$ ,  $W_2(p) = \frac{4}{p}$ ,  $W_3 = \frac{1}{1+p}$ .

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{10p}{p(1+0.2p)(1+0.5p)} \,. \label{eq:Wp}$  Определить, устойчива ли замкнутая система.

Анализ устойчивости системы осуществляется с помощью любого известного алгебраического или частотного критерия. Проверку расчетов следует провести с помощью моделирования в Simulink.

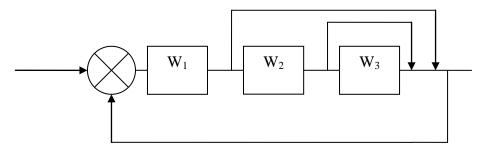
8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{10p}{p(1+0.2p)(1+0.5p)} \,.$  Определить установившуюся ошибку системы, если

на ее вход подается задающее воздействие вида g(t) = 2 + t.

Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{10p+1}{p(1+0.2p)(1+0.5p)}$ . Определить запасы устойчивости системы по фазе и по амплитуде.

- 1. Известно дифференциальное уравнение, описывающее динамическое звено:  $3\frac{d^2y}{dt^2} + \frac{dy}{dt} + y = 2\frac{du}{dt} + u$ . Найти передаточную функцию звена W(p).
- 2. Имеется инерционное интегрирующее звено с передаточной функцией  $W(p) = \frac{5}{p(1+0,2p)}$ . На вход звена поступает сигнал вида  $x(t) = 1 + e^{-t}$ . Найти вид


сигнала на выходе звена

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink

3. Известна передаточная функция динамического звена:  $W(p) = \frac{p+5}{p(1+0.4p)}$ . Найти комплексную частотную передаточную функцию, амплитудно-частотную и фазо-частотную характеристики звена.

Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 4. Известна передаточная функция динамического звена:  $W(p) = \frac{10p}{(1+0.2\,p)(1+0.5\,p)} \,. \, \, \text{Построить асимптотическую ЛАХ}.$
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{p+5}{p(1+0.4p)}$ . Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ.



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{1}{p(1+p)}, W_2(p) = \frac{3}{1+0.3p}, W_3 = \frac{4}{1+0.2p}$ .

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{(p+5)}{p^2(1+0.4p)} \,.$  Определить, устойчива ли замкнутая система.

8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{(p+5)}{p^2(1+0.4p)} \,.$  Определить установившуюся ошибку системы, если на ее

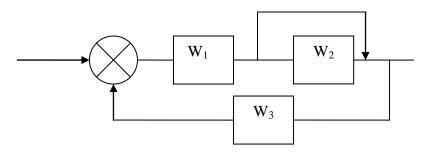
вход подается задающее воздействие вида  $g(t) = t^2 + 1$ .

Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{(2p+5)}{p^2(1+0,4p)}$ . Определить запасы устойчивости системы по фазе и по амплитуде.

- 1. Известно дифференциальное уравнение, описывающее динамическое звено:  $\frac{d^3y}{dt^3} + 6\frac{d^2y}{dt^2} + 2\frac{dy}{dt} + 3y = \frac{du}{dt} + u$ . Найти передаточную функцию звена W(p).
- 2. Имеется апериодическое звено с передаточной функцией  $W(p) = \frac{1}{1+p}$ .

На вход звена поступает сигнал вида  $x(t) = \cos 2t$ . Найти вид сигнала на выходе звена.


Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink

3. Известна передаточная функция динамического звена:  $W(p) = \frac{3(1+0.1p)}{p(1+2p)^2}$ .

Найти комплексную частотную передаточную функцию, амплитудночастотную и фазо-частотную характеристики звена.

Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 4. Известна передаточная функция динамического звена:  $W(p) = \frac{p+5}{p(1+0.4p)} \,. \,\, \text{Построить асимптотическую ЛАХ}.$
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{3}{p(1+0,2p)^2}.$  Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ.



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{4}{p}, W_2(p) = \frac{2}{1+p}, W_3 = \frac{5}{p}$ .

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{3}{p(1+0.2\,p)^2} \,. \, \text{Определить, устойчива ли замкнутая система.}$ 

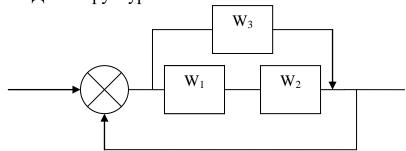
Анализ устойчивости системы осуществляется с помощью любого известного алгебраического или частотного критерия. Проверку расчетов следует провести с помощью моделирования в Simulink.

8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{3}{p(1+0.2\,p)^2} \,.$  Определить установившуюся ошибку системы, если на ее

вход подается задающее воздействие вида g(t) = t + 0.5.

Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{3}{p(1+0,2p)^2}$ . Определить запасы устойчивости системы по фазе и по амплитуде.


- 1. Известно дифференциальное уравнение, описывающее динамическое звено:  $\frac{d^4y}{dt^4} + 3\frac{d^3y}{dt^3} + 7\frac{d^2y}{dt^2} + y = \frac{du}{dt}$ . Найти передаточную функцию звена W(p).
- 2. Имеется апериодическое звено с передаточной функцией  $W(p) = \frac{8}{1+0.2p}$ . На вход звена поступает сигнал вида  $x(t) = e^{-5t}$ . Найти вид сигнала на выходе звена.

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink

3. Известна передаточная функция динамического звена:  $W(p) = \frac{5p}{(1+0,1p)(1+0,2p)(1+p)}.$  Найти комплексную частотную передаточную

функцию, амплитудно-частотную и фазо-частотную характеристики звена. Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 4. Известна передаточная функция динамического звена:  $W(p) = \frac{2(1+0,2p)}{p(1+0,25\,p^2)} \,.$  Построить асимптотическую ЛАХ.
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{5p}{(1+0,1p)(1+0,2p)(1+p)}.$  Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ:



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{1}{8p}, W_2(p) = \frac{2}{1+p}, W_3 = \frac{4}{1+0.5p}$ .

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{5p}{(1+0,1p)(1+0,2p)(1+p)}.$  Определить, устойчива ли замкнутая система.

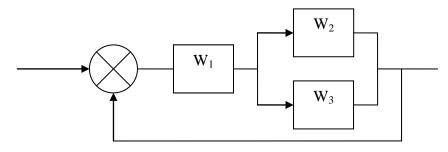
Анализ устойчивости системы осуществляется с помощью любого известного алгебраического или частотного критерия. Проверку расчетов следует провести с помощью моделирования в Simulink.

8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{2}{p(1+0.25\,p^2)} \,.$  Определить установившуюся ошибку системы, если на ее

вход подается задающее воздействие вида g(t) = 2t + 6.

Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{2p^2 + 1}{p(1 + 0.25p^2)}.$  Определить запасы устойчивости системы по фазе и по амплитуде.


- 1. Известна передаточная функция звена  $W(p) = \frac{10}{p^3 + 2p^2 + 3p + 1}$ . Найти дифференциальное уравнение, описывающее это звено.
- 2. Имеется апериодическое звено с передаточной функцией  $W(p) = \frac{4}{1+3p}$ . На вход звена поступает сигнал вида x(t) = 2+t. Найти вид сигнала на выходе

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink

3. Известна передаточная функция динамического звена:  $W(p) = \frac{3(1+0,3p)}{p^2(1+0,2p)}.$  Найти комплексную частотную передаточную функцию,

амплитудно-частотную и фазо-частотную характеристики звена Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{3(1+0,3p)}{p^2(1+0,2p)}.$  Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ.



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_{\rm e}(p)$ , если  $W_{\rm I}(p)=\frac{5(1+p)}{p}, W_{\rm 2}(p)=\frac{1}{p}, W_{\rm 3}=\frac{4}{1+0.2p}$ .

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{3(1+0,3p)}{p^2(1+0,2p)} \,.$  Определить, устойчива ли замкнутая система.

8. Известна передаточная функция разомкнутого контура:

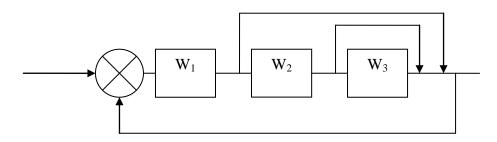
$$W(p) = \frac{5p}{(1+0,1p)(1+0,2p)(1+p)}$$
. Определить установившуюся ошибку системы,

если на ее вход подается задающее воздействие вида g(t) = 10.

Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:

$$W(p) = \frac{5p}{(1+0,1p)(1+0,2p)(1+p)}$$
. Определить запасы устойчивости системы по фазе и по амплитуде.


- 1. Известна передаточная функция звена  $W(p) = \frac{3p}{2p^3 + p^2 + p + 4}$ . Найти дифференциальное уравнение, описывающее это звено.
- 2. Имеется изодромное звено с передаточной функцией  $W(p) = \frac{10(1+p)}{p}$ . На вход звена поступает сигнал вида  $x(t) = \sin 2t$ . Найти вид сигнала на выходе

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink.

3. Известна передаточная функция динамического звена:  $W(p) = \frac{4+p^2}{p(1+0.25p)}.$  Найти комплексную частотную передаточную функцию, амплитудно-частотную и фазо-частотную характеристики звена.

Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 4. Известна передаточная функция динамического звена:  $W(p) = \frac{3(1+0,3p)}{p^2(1+0,2p)} \,.$  Построить асимптотическую ЛАХ.
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{4+p}{p(1+0.25p)}.$  Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ.



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_{\rm e}(p)$ , если  $W_1(p)=\frac{5}{p},W_2(p)=\frac{1}{2p},W_3=\frac{1+0.1p}{2p}$ .

7. Известна передаточная функция разомкнутого контура:

$$W(p) = \frac{4+p}{p(1+0.1p)(1+0.25p)}$$
. Определить, устойчива ли замкнутая система.

Анализ устойчивости системы осуществляется с помощью любого известного алгебраического или частотного критерия. Проверку расчетов следует провести с помощью моделирования в Simulink.

8. Известна передаточная функция разомкнутого контура:

$$W(p) = \frac{3(1+0,3p)}{p^2(1+0,2p)}$$
. Определить установившуюся ошибку системы, если на ее

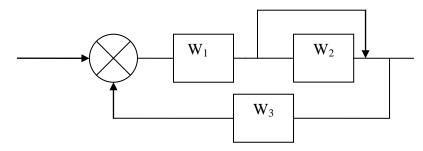
вход подается задающее воздействие вида  $g(t) = t^2 + 2t + 1$ .

Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:

$$W(p) = \frac{3(1+0.3p)}{p^2(1+2p)}$$
. Определить запасы устойчивости системы по фазе и по

амплитуде.


- 1. Известна передаточная функция звена  $W(p) = \frac{2(p+1)}{p^2 + 4p + 4}$ . Найти дифференциальное уравнение, описывающее это звено.
- 2. Имеется изодромное звено с передаточной функцией  $W(p) = \frac{1+2p}{3p}$ . На вход звена поступает сигнал вида  $x(t) = \cos 0.3t$ . Найти вид сигнала на выходе звена

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink

3. Известна передаточная функция динамического звена:  $W(p) = \frac{3(1+0,2p)}{p(1+2p)(1+0,5p)} \,. \quad \text{Найти комплексную частотную передаточную функцию, амплитудно-частотную и фазо-частотную характеристики звена.}$ 

Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 4. Известна передаточная функция динамического звена:  $W(p) = \frac{4+p}{p(1+0.25p)} \,. \,$  Построить асимптотическую ЛАХ.
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{3(1+0.2p)}{p(1+2p)(1+0.5p)} \,. \ \, \text{Получить описание звена в пространстве состояний}$  (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ.

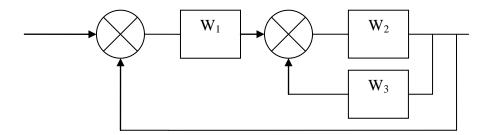


Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{10}{p(1+p)}, W_2(p) = \frac{2}{p}, W_3 = \frac{1}{1+p}$ .

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{3(1+0.2p)}{p(1+2p)(1+0.5p)} \,. \, \text{Определить, устойчива ли замкнутая система.}$ 

8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{4+p}{p(1+0,1p)(1+0,25p)}.$  Определить установившуюся ошибку системы,

если на ее вход подается задающее воздействие вида g(t) = t + 3.


Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{4+p}{p(1+0,1p)(1+0,25p)}.$  Определить запасы устойчивости системы по фазе и по амплитуде.

- 1. Известна передаточная функция звена  $W(p) = \frac{4p+1}{p(2p^2+p+1)}$ . Найти дифференциальное уравнение, описывающее это звено.
- 2. Имеется изодромное звено с передаточной функцией  $W(p) = \frac{3(1+3p)}{p}$ . На вход звена поступает сигнал вида x(t) = 2t. Найти вид сигнала на выходе

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink.

- 3. Известна передаточная функция динамического звена:  $W(p) = \frac{2p+4}{p(1+0,3p)(1+0,1p)}.$  Найти комплексную частотную передаточную функцию, амплитудно-частотную и фазо-частотную характеристики звена. Выражения для частотных характеристик находятся аналитически, графики
- строятся с помощью Matlab 4. Известна передаточная функция динамического звена:  $W(p) = \frac{3(1+0.2p)}{p(1+2p)(1+0.5p)} .$  Построить асимптотическую ЛАХ.
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{2p+4}{p(1+0,3p)(1+0,1p)}.$  Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ:



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{0.5}{1+0.1p}, W_2(p) = \frac{2}{1+p}, W_3 = \frac{1}{p}$ .

7. Известна передаточная функция разомкнутого контура:

$$W(p) = \frac{2p+4}{p(1+0,3p)(1+0,1p)}$$
. Определить, устойчива ли замкнутая система/

Анализ устойчивости системы осуществляется с помощью любого известного алгебраического или частотного критерия. Проверку расчетов следует провести с помощью моделирования в Simulink.

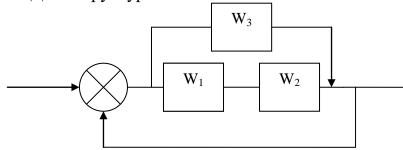
8. Известна передаточная функция разомкнутого контура:

$$W(p) = \frac{3(1+0.2p)}{p(1+2p)(1+0.5p)}$$
. Определить установившуюся ошибку системы, если

на ее вход подается задающее воздействие вида g(t) = 2t + 1.

Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:


$$W(p) = \frac{3(1+0.2p)}{p(1+2p)(1+0.5p)}$$
 . Определить запасы устойчивости системы по фазе и

по амплитуде.

- 1. Известна передаточная функция звена  $W(p) = \frac{8p}{p^3 + 3p + 1}$ . Найти дифференциальное уравнение, описывающее это звено.
- 2. Имеется изодромное звено с передаточной функцией  $W(p) = \frac{1+0.2p}{5p}$ . На вход звена поступает сигнал вида  $x(t) = e^{-0.1t}$ . Найти вид сигнала на выходе звена.

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink.

- 3. Известна передаточная функция динамического звена:  $W(p) = \frac{7}{p(1+0,4p)(1+p)}.$  Найти комплексную частотную передаточную функцию, амплитудно-частотную и фазо-частотную характеристики звена. Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab
- 4. Известна передаточная функция динамического звена:  $W(p) = \frac{2p+4}{p(1+0.3p)(1+0.1p)} \,.$  Построить асимптотическую ЛАХ
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{7}{p(1+0.4p)(1+p)}.$  Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ:



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_{\rm e}(p)$ , если  $W_1(p)=\frac{1}{1+0,2\,p}, W_2(p)=\frac{2}{p}, W_3=5$ .

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{7}{p(1+0.4p)(1+p)}.$  Определить, устойчива ли замкнутая система.

8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{2p+4}{p(1+0,3p)(1+0,1p)} \,.$  Определить установившуюся ошибку системы, если

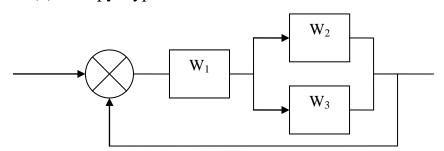
Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

на ее вход подается задающее воздействие вида g(t) = 5t.

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{2p+4}{p(1+0,3p)(1+0,1p)} \,.$  Определить запасы устойчивости системы по фазе и по амплитуде.

- 1. Известна передаточная функция звена  $W(p) = \frac{2p(1+3p)}{p^3+4p^2+p+2}$ . Найти дифференциальное уравнение, описывающее это звено.
- 2. Имеется изодромное звено с передаточной функцией  $W(p) = \frac{2(1+0.5p)}{p}$ .

На вход звена поступает сигнал вида  $x(t) = 1 - 2e^{-t}$ . Найти вид сигнала на выходе звена.


Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink

3. Известна передаточная функция динамического звена:  $W(p) = \frac{1+p}{p^2(1+0.5p)}$ . Найти комплексную частотную передаточную функцию,

амплитудно-частотную и фазо-частотную характеристики звена.

Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 4. Известна передаточная функция динамического звена:  $W(p) = \frac{7}{p(1+0.4p)(1+p)} \,.$  Построить асимптотическую ЛАХ.
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{1+p}{p^2(1+0.5p)}$ . Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ.



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{5p}{1+p}, W_2(p) = \frac{1}{3p}, W_3 = \frac{1}{1+0,2p}$ .

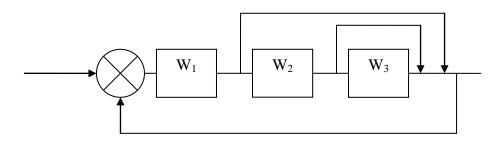
7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{1+p}{p^2(1+0.5p)}.$  Определить, устойчива ли замкнутая система.

Анализ устойчивости системы осуществляется с помощью любого известного алгебраического или частотного критерия. Проверку расчетов следует провести с помощью моделирования в Simulink.

8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{7}{p(1+0.4p)(1+p)}.$  Определить установившуюся ошибку системы, если на ее вход подается задающее воздействие вида g(t) = 10t + 1.

Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{1,7}{p(1+0,4p)(1+p)}$ . Определить запасы устойчивости системы по фазе и по амплитуде.


- 1. Известна передаточная функция звена  $W(p) = \frac{5}{(p+2)(p+3)}$ . Найти дифференциальное уравнение, описывающее это звено.
- 2. Имеется инерционное интегрирующее звено с передаточной функцией  $W(p) = \frac{10}{p(1+3p)}$ . На вход звена поступает сигнал вида  $x(t) = \sin t$ . Найти вид сигнала на выходе звена.

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink.

3. Известна передаточная функция динамического звена:  $W(p) = \frac{2(1+p)(1+0,3p)}{p^2(1+2p)}.$  Найти комплексную частотную передаточную

функцию, амплитудно-частотную и фазо-частотную характеристики звена. Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 4. Известна передаточная функция динамического звена:  $W(p) = \frac{1+p}{p^2(1+0.5p)} \,. \,\, \text{Построить асимптотическую ЛАХ}.$
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{2}{p^2(1+0.1p)(1+p)}.$  Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ.



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{1}{1+p}, W_2(p) = \frac{1}{p}, W_3 = \frac{p}{1+2p}$ .

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{2}{p^2(1+0.1p)(1+p)} \,. \, \text{Определить, устойчива ли замкнутая система.}$ 

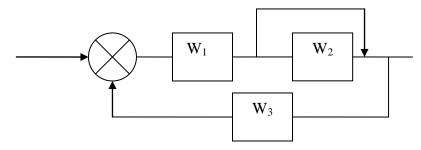
8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{1+p}{p^2(1+0.5p)}.$  Определить установившуюся ошибку системы, если на ее

вход подается задающее воздействие вида  $g(t) = 2t^2 + 1$ .

Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{1+p}{p^2(1+0.5p)}$ . Определить запасы устойчивости системы по фазе и по амплитуде.

- 1. Известна передаточная функция звена  $W(p) = \frac{7(1+3p)}{(p+1)(p^2+2p+2)}$ . Найти дифференциальное уравнение, описывающее это звено.
- 2. Имеется инерционное интегрирующее звено с передаточной функцией  $W(p) = \frac{1}{p(1+0,1p)}$ . На вход звена поступает сигнал вида  $x(t) = 1 \cos 2t$ . Найти


вид сигнала на выходе звена.

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink.

3. Известна передаточная функция динамического звена:  $W(p) = \frac{20p}{(1+3p)(1+2p)} \,. \label{eq:Wp}$  Найти комплексную частотную передаточную

функцию, амплитудно-частотную и фазо-частотную характеристики звена. Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 4. Известна передаточная функция динамического звена:  $W(p) = \frac{2(1+p)(1+0,3p)}{p^2(1+0,1p)}.$  Построить асимптотическую ЛАХ.
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{20p}{(1+3p)(1+0,2p)}$ . Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ.



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_{\rm e}(p)$ , если  $W_1(p)=\frac{10\,p}{1+0.1\,p}, W_2(p)=\frac{4}{1+\,p}, W_3=10$ .

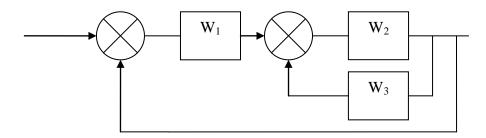
7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{20p}{p(1+3p)(1+0.2p)} \,. \, \text{Определить, устойчива ли замкнутая система.}$ 

8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{2}{p^2(1+0,1p)(1+p)} \,. \,\, \text{Определить установившуюся ошибку системы, если}$ 

на ее вход подается задающее воздействие вида  $g(t) = t^2 + 4t$ .

Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{2}{p(1+0,1p)(1+p)}$ . Определить запасы устойчивости системы по фазе и по амплитуде.


- 1. Известна передаточная функция звена  $W(p) = \frac{4p^2}{p^3 + 3p^2 + 2}$ . Найти дифференциальное уравнение, описывающее это звено.
- 2. Имеется инерционное интегрирующее звено с передаточной функцией  $W(p) = \frac{2}{p(1+2p)}$ . На вход звена поступает сигнал вида x(t) = 2-t. Найти вид сигнала на выходе звена.

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink.

3. Известна передаточная функция динамического звена:  $W(p) = \frac{10(1+0.02p)}{p(1+0.2p)}.$  Найти комплексную частотную передаточную функцию, амплитудно-частотную и фазо-частотную характеристики звена.

Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{10(1+0,02p)}{p(1+0,2p)}$ . Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ:



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{0.1}{1+p}, W_2(p) = \frac{5}{1+0.2\,p}, W_3 = 0.2$ .

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{10(1+0,02\,p)}{p^2(1+0,2\,p)}\,.$  Определить, устойчива ли замкнутая система.

8. Известна передаточная функция разомкнутого контура:

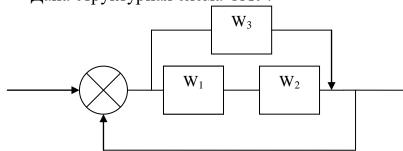
$$W(p) = \frac{20p}{p(1+3p)(1+0,2p)}$$
 . Определить установившуюся ошибку системы, если

на ее вход подается задающее воздействие вида g(t) = t - 5.

Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:

$$W(p) = \frac{2p+1}{p(1+3p)(1+0,2p)}$$
. Определить запасы устойчивости системы по фазе и по амплитуде.


- 1. Известна передаточная функция звена  $W(p) = \frac{1+2p}{p(p^3+5p^2+p+10)}$ . Найти дифференциальное уравнение, описывающее это звено
- 2. Имеется инерционное интегрирующее звено с передаточной функцией  $W(p) = \frac{1}{2p(1+p)}$ . На вход звена поступает сигнал вида  $x(t) = e^{-0.2t}$ . Найти вид сигнала на выходе звена.

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink.

3. Известна передаточная функция динамического звена:  $W(p) = \frac{8(1+0.5p)}{p(1+0.1p)(1+p)}.$  Найти комплексную частотную передаточную функцию, амплитудно-частотную и фазо-частотную характеристики звена.

Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 4. Известна передаточная функция динамического звена:  $W(p) = \frac{10(1+0,02\,p)}{p(1+0,2\,p)}.$  Построить асимптотическую ЛАХ.
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{8(1+0.5p)}{p(1+0.1p)(1+p)}.$  Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме).
- 6. Дана структурная схема САУ:



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{p}{1+2p}, W_2(p) = \frac{2}{1+0.5\,p}, W_3 = 0.5$ .

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{8(1+0.5\,p)}{p(1+0.1\,p)(1+\,p)}\,.$  Определить, устойчива ли замкнутая система/

8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{10(1+0,02p)}{p^2(1+0,2p)}.$  Определить установившуюся ошибку системы, если на ее

вход подается задающее воздействие вида  $g(t) = 0.2t^2 + 3t - 1$ .

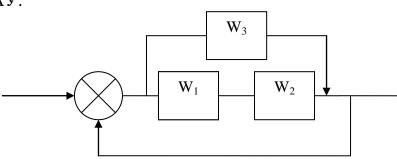
Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{2(1+0,2p)}{p^2(1+0,02p)}$ . Определить запасы устойчивости системы по фазе и по амплитуде.

- 1. Известна передаточная функция звена  $W(p) = \frac{1+0.2p}{p(p^3+5p^2+p+10)}$ . Найти дифференциальное уравнение, описывающее это звено.
- 2. Имеется инерционное интегрирующее звено с передаточной функцией  $W(p) = \frac{5}{p(1+0,2p)}$ . На вход звена поступает сигнал вида  $x(t) = 1 + e^{-t}$ . Найти вид

сигнала на выходе звена.

Каждая задача должна быть решена сначала аналитически, с использованием таблицы прямых и обратных преобразований Лапласа, а затем решение должно быть промоделировано в Simulink


3. Известна передаточная функция динамического звена:  $W(p) = \frac{10(1+0.02p)}{p(1+0.2p)}.$ 

Найти комплексную частотную передаточную функцию, амплитудночастотную и фазо-частотную характеристики звена.

Выражения для частотных характеристик находятся аналитически, графики строятся с помощью Matlab

- 4. Известна передаточная функция динамического звена:  $W(p) = \frac{8(1+0.5p)}{p(1+0.1p)(1+p)} \,. \, \text{Построить асимптотическую ЛАХ}.$
- 5. Известна передаточная функция динамического звена:  $W(p) = \frac{2}{p(1+0.25\,p^2)} \,. \ \, \text{Получить описание звена в пространстве состояний (в канонической форме и в векторно-матричной форме)}$

6. САУ: Дана структурная схема



Требуется найти передаточные функции: разомкнутого контура системы W(p), замкнутого контура системы H(p) и передаточную функцию системы для ошибки по задающему воздействию  $H_e(p)$ , если  $W_1(p) = \frac{p}{1+0.2\,p}$ ,  $W_2(p) = \frac{2}{1+0.5\,p}$ ,  $W_3 = 1.5$ 

7. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{8(1+0.5\,p)}{p(1+0.1\,p)(1+\,p)}\,.$  Определить, устойчива ли замкнутая система.

Анализ устойчивости системы осуществляется с помощью любого известного алгебраического или частотного критерия. Проверку расчетов следует провести с помощью моделирования в Simulink.

8. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{8(1+0.5p)}{p(1+0.1p)(1+p)}$ . Определить установившуюся ошибку системы, если на ее вход подается задающее воздействие вида g(t) = t+10.

Расчет установившейся ошибки системы производится аналитически. Проверка расчетов проводится с помощью моделирования в Simulink

9. Известна передаточная функция разомкнутого контура:  $W(p) = \frac{8(1+0.5p)}{p(1+0.1p)(1+p)}$ . Определить запасы устойчивости системы по фазе и по амплитуде.