Рекомендации к выполнению курсового проекта по дисциплине «Скважинная добыча нефти и газа».

Расчетная часть курсового проекта по СДН должна включать:

- 1. При подборе оборудования и установлении режима работы фонтанной скважины:
- определение забойного давления с учетом ограничений по величине забойного давления по следующим условиям:
 - 1) $P_{3a6} > 0.75 \cdot P_{Hac}$
 - 2) $P_{3a6} > P_{3kij}$, P_{3kij} давление, при котором происходит разрушение цементного камня.

 $P_{3\kappa \mu}$ = $P_{B.\Gamma}$ -h· grad $P_{3\kappa \mu}$, grad $P_{3\kappa \mu}$ – градиент давления, при котором происходит разрушение цементного камня, h – расстояние между верхними (нижними) перфорационными отверстиями продуктивного нефтенасыщенного пласта и водоносным горизонтом, $P_{B.\Gamma}$ – пластовое давление в водоносном горизонте (приближенно можно рассчитать как гидростатическое давление пластовой воды с учетом глубины залегания водоносного горизонта H_B);

- подбор оборудования и расчет минимального забойного давления фонтанирования;
- расчет предельной обводненности, при которой возможно фонтанирование;
- расчет распределения давления по стволу скважины (по эксплуатационной колонне и HKT).
 - 2. При подборе оборудования и установлении режима работы газлифтной скважины:
- определение забойного давления с учетом ограничений по величине забойного давления по следующим условиям:
 - 1) $P_{3a6} > 0.75 \cdot P_{Hac}$
 - 2) $P_{\text{заб}} > P_{\text{зкц}}$, $P_{\text{зкц}}$ давление, при котором происходит разрушение цементного камня.

 $P_{3\kappa \mu}$ = $P_{B.r.}$ -h· grad $P_{3\kappa \mu}$, grad $P_{3\kappa \mu}$ – градиент давления, при котором происходит разрушение цементного камня, h – расстояние между верхними (нижними) перфорационными отверстиями продуктивного нефтенасыщенного пласта и водоносным горизонтом, $P_{B.r.}$ – пластовое давление в водоносном горизонте (приближенно можно рассчитать как гидростатическое давление пластовой воды с учетом глубины залегания водоносного горизонта H_B);

- подбор оборудования;
- расчет пускового давления;
- определение оптимального режима работы газлифтной установки при различных удельных расходах нагнетаемого газа $R_{\rm r}$;
- расчет расстановки пусковых клапанов (совместно с построением распределения давления по стволу скважины (по эксплуатационной колонне и НКТ));
 - расчет компрессорного подъемника.
- 3. При подборе оборудования и установлении режима работы скважины с установкой штангового скважинного насоса:

- определение забойного давления с учетом ограничений по величине забойного давления по следующим условиям:
 - 1) $P_{3a6} > 0,75 \cdot P_{Hac}$
 - 2) $P_{3a6} > P_{3kij}$, P_{3kij} давление, при котором происходит разрушение цементного камня.

 $P_{3\kappa \mu} = P_{B.\Gamma.} - h \cdot grad P_{3\kappa \mu}$, $grad P_{3\kappa \mu}$ — градиент давления, при котором происходит разрушение цементного камня, h — расстояние между верхними (нижними) перфорационными отверстиями продуктивного нефтенасыщенного пласта и водоносным горизонтом, $P_{B.\Gamma.}$ — пластовое давление в водоносном горизонте (приближенно можно рассчитать как гидростатическое давление пластовой воды с учетом глубины залегания водоносного горизонта H_B);

- подбор оборудования;
- выбор компоновки ШСНУ (совместно с построением распределения давления по стволу скважины (по эксплуатационной колонне и НКТ));
 - расчет подачи насоса с учетом потерь хода плунжера и длины хода полированного штока.
- 4. При подборе оборудования и установлении режима работы скважины с установкой электроцентробежного насоса:
- определение забойного давления с учетом ограничений по величине забойного давления по следующим условиям:
 - 1) $P_{3a6} > 0.75 \cdot P_{Hac}$
 - 2) $P_{3a6} > P_{3kij}$, P_{3kij} давление, при котором происходит разрушение цементного камня.

 $P_{3\kappa \mu}$ = $P_{B.\Gamma}$ -h· grad $P_{3\kappa \mu}$, grad $P_{3\kappa \mu}$ – градиент давления, при котором происходит разрушение цементного камня, h – расстояние между верхними (нижними) перфорационными отверстиями продуктивного нефтенасыщенного пласта и водоносным горизонтом, $P_{B.\Gamma}$ – пластовое давление в водоносном горизонте (приближенно можно рассчитать как гидростатическое давление пластовой воды с учетом глубины залегания водоносного горизонта H_B);

- подбор оборудования;
- расчет распределения давления по стволу скважины (по эксплуатационной колонне и HKT);
- подбор электроцентробежного насоса, кабеля, электродвигателя, трансформатора, станции управления.

Варианты для расчетной части при подборе оборудования и установлении режима работы фонтанной скважины

Вариант	1	2	3	4	5	6	7	8	9	10
D ЭКвнеш, мм	140	140	146	146	168	168	140	140	140	140
Рпл, МПа	17,3	18,2	18,4	18,9	19,1	19,7	19,2	19,4	19,8	20,3
Кпрод, т/(сут атм)	224	358	194	217	391	318	256	311	148	202
Н _в , м	1595	1644	1688	1712	1757	1792	1850	1888	1913	1952
gradP _{зкц} , атм/м	15	16	18	20	22	15	16	18	20	22
$ ho_{\rm HZ}$, КГ/ $ m M^3$	850,0	849,5	849,0	848,5	848,0	847,5	847,0	846,5	846,0	845,5
$ ho_{\rm hff,}$ КГ/М 3	798	796	794	792	790	788	786	784	782	780
$\rho_{\rm b}$, $\kappa \Gamma/{ m m}^3$	1165	1166	1167	1168	1169	1170	1164	1163	1162	1161
β _в , %	5	10	15	20	25	30	35	40	45	50
μ _{нд,} мПа∙с	8,0	8,3	8,6	8,9	9,2	9,5	9,8	10,1	10,4	10,7
Ру, МПа	1,14	1,24	1,34	1,44	1,54	1,64	1,74	1,84	1,94	2,04
µ _{нпл} , мПа∙с	2,8	3,0	3,2	3,4	3,6	3,8	4,0	4,2	4,4	4,6
Тпл, К	307	309	311	313	315	317	319	321	323	325
Рнас, МПа	8,1	8,2	8,3	8,4	8,5	8,6	8,7	8,8	8,9	9,0
ω, °K/м	0,0189	0,0191	0,0193	0,0195	0,0197	0,0199	0,0201	0,0203	0,0205	0,0207
Γ , M^3/M^3	80	82	84	86	88	90	92	94	96	98
h пл, м*	10,2	8,6	7,4	6,9	6,5	15,4	12,7	4,8	5,9	9,1
$ ho_{\Gamma 0}$, $\kappa \Gamma / M^3$	1,436	1,439	1,442	1,445	1,448	1,451	1,454	1,457	1,46	1,463
L _c , M	1600	1640	1680	1720	1760	1800	1840	1880	1920	1960
Y _а , д,ед	0,039	0,036	0,037	0,039	0,036	0,038	0,035	0,036	0,04	0,042
Y _{c1} , д,ед	0,401	0,406	0,411	0,416	0,367	0,372	0,377	0,382	0,396	0,39

^{*} $\mathbf{h}_{\text{пл}}-$ толщина продуктивного пласта, м.

Варианты для расчетной части при подборе оборудования и установлении режима работы газлифтной скважины

Вариант	1	2	3	4	5	6	7	8	9	10
D ЭКвнеш, мм	140	140	146	146	168	168	140	140	140	140
Кпогл, д.ед.	0,1	0,15	0,2	0,25	0,3	0,35	0,4	0,45	0,5	0,55
Н _в , м	1595	1644	1688	1712	1757	1792	1850	1888	1913	1952
gradP _{зкц}	15	16	18	20	22	15	16	18	20	22
Кпрод,										
т/(сут·атм)	56	67	46	49	86	54	31	28	24	20
Рпл, МПа	17,3	18,2	18,4	18,9	19,1	19,7	19,2	19,4	19,8	20,3
$ ho_{\rm HZ}$, КГ/М 3	850,0	849,5	849,0	848,5	848,0	847,5	847,0	846,5	846,0	845,5
$\rho_{\rm нпл}$, кг/м ³	798	796	794	792	790	788	786	784	782	780
$\rho_{\rm b}$, $\kappa \Gamma/{ m m}^3$	1165	1166	1167	1168	1169	1170	1164	1163	1162	1161
β _в , %	5	10	15	20	25	30	35	40	45	50
$R_o^*, M^3/M^3$	-	-	-	1	-	-	-	-	-	ı
μ _{нд,} мПа∙с	8,0	8,3	8,6	8,9	9,2	9,5	9,8	10,1	10,4	10,7
Р _у **, МПа	0,7	0,75	0,8	0,85	0,9	0,95	0,45	0,5	0,55	0,6
μнпл, мПа∙с	2,8	3,0	3,2	3,4	3,6	3,8	4,0	4,2	4,4	4,6
T_{nn} , K	307	309	311	313	315	317	319	321	323	325
Рнас, МПа	7,1	7,2	7,3	7,4	7,5	7,6	6,5	6,6	6,7	6,8
ω, °К/м	0,0189	0,0191	0,0193	0,0195	0,0197	0,0199	0,0201	0,0203	0,0205	0,0207
Γ , M^3/M^3	80	82	84	86	88	90	92	94	96	98
$\rho_{\Gamma 0}$, $\kappa \Gamma / M^3$	1,436	1,439	1,442	1,445	1,448	1,451	1,454	1,457	1,46	1,463
L _c , м	1600	1640	1680	1720	1760	1800	1840	1880	1920	1960
$P_{3a\kappa}$, $M\Pi a$	6,1	6,3	6,5	6,7	6,9	7,1	5,5	5,6	5,7	5,8
Y _a , д,ед	0,039	0,036	0,037	0,039	0,036	0,038	0,035	0,036	0,04	0,042
Y _{c1} , д,ед	0,401	0,406	0,411	0,416	0,367	0,372	0,377	0,382	0,396	0,39

Примечание * - значения удельного расхода газа при расчете компрессорного подъемника взять произвольно;

^{** -} давление на устье, которое необходимо создать газлифтному подъемнику при вводе газа

Варианты для расчетной части при подборе оборудования и установлении режима работы скважины с установкой штангового скважинного насоса

Вариант	1	2	3	4	5	6	7	8	9	10
D ЭКвнеш, мм	140	140	146	146	168	168	140	140	140	140
Н _в , м	1595	1644	1688	1712	1757	1792	1850	1888	1913	1952
gradP _{зки} , атм/м	15	16	18	20	22	15	16	18	20	22
Рпл, МПа	15,3	17,4	17,6	18,1	18,3	18,9	18,4	18,6	19	19,5
Кпрод, т/(сут·атм)	15	20	16	14	30	13	8	11	16	17
$\rho_{\rm HJ}$, кг/м ³	850,0	849,5	849,0	848,5	848,0	847,5	847,0	846,5	846,0	845,5
$\rho_{\text{нпл}}$, кг/м ³	798	796	794	792	790	788	786	784	782	780
ρ_{B} , $\kappa\Gamma/\text{M}^3$	1165	1166	1167	1168	1169	1170	1164	1163	1162	1161
βв, %	5	10	15	20	25	30	35	40	45	50
μ _{нд,} мПа∙с	8,0	8,3	8,6	8,9	9,2	9,5	9,8	10,1	10,4	10,7
Р у*, МПа	0,6	0,7	0,8	0,9	1,1	1,2	0,5	0,6	0,7	0,8
μнпл, мПа∙с	2,8	3,0	3,2	3,4	3,6	3,8	4,0	4,2	4,4	4,6
T_{nn} , K	307	309	311	313	315	317	319	321	323	325
Рнас, МПа	6,1	6,2	6,3	6,4	6,5	6,6	5,5	5,6	5,7	5,8
ω, °К/м	0,0189	0,0191	0,0193	0,0195	0,0197	0,0199	0,0201	0,0203	0,0205	0,0207
Γ , M^3/M^3	80	82	84	86	88	90	92	94	96	98
$\rho_{\Gamma 0}$, $\kappa \Gamma/M^3$	1,436	1,439	1,442	1,445	1,448	1,451	1,454	1,457	1,46	1,463
L _c , м	1600	1640	1680	1720	1760	1800	1840	1880	1920	1960
Ya, д,ед	0,039	0,036	0,037	0,039	0,036	0,038	0,035	0,036	0,04	0,042
Y с1, д,ед	0,401	0,406	0,411	0,416	0,367	0,372	0,377	0,382	0,396	0,39

Примечание * - давление на устье, которое необходимо создать ШГНУ

Варианты для расчетной части при подборе оборудования и установлении режима работы скважины с установкой электропентробежного насоса

с установкои электроцентрооежного насоса										
Вариант	1	2	3	4	5	6	7	8	9	10
D ЭКвнеш, мм	140	140	146	146	168	168	140	140	140	140
Рпл, МПа	17,3	18,2	18,4	18,9	19,1	19,7	19,2	19,4	19,8	20,3
Н _в , м	1595	1644	1688	1712	1757	1792	1850	1888	1913	1952
gradP _{зкц} , атм/м	15	16	18	20	22	15	16	18	20	22
Кпрод,										
т/(сут·атм)	88	113	87	90	145	92	100	80	72	56
$\rho_{\rm HJ}$, КГ/М 3	850,0	849,5	849,0	848,5	848,0	847,5	847,0	846,5	846,0	845,5
$\rho_{\rm нпл}$, кг/м 3	798	796	794	792	790	788	786	784	782	780
$\rho_{\rm b}$, $\kappa \Gamma/{ m m}^3$	1165	1166	1167	1168	1169	1170	1164	1163	1162	1161
β _в , %	5	10	15	20	25	30	35	40	45	50
μ _{нд} , мПа∙с	8,0	8,3	8,6	8,9	9,2	9,5	9,8	10,1	10,4	10,7
Ру*, МПа	0,6	0,7	0,8	0,9	1,1	1,2	0,5	0,6	0,7	0,8
μ _{нпл,} мПа∙с	2,8	3,0	3,2	3,4	3,6	3,8	4,0	4,2	4,4	4,6
Тпл, К	307	309	311	313	315	317	319	321	323	325
Рнас, МПа	8,1	8,2	8,3	8,4	8,5	8,6	8,5	8,6	8,7	8,8
ω, °К/м	0,0189	0,0191	0,0193	0,0195	0,0197	0,0199	0,0201	0,0203	0,0205	0,0207
Γ , M^3/M^3	80	82	84	86	88	90	92	94	96	98
$\rho_{\Gamma 0}$, $\kappa \Gamma/M^3$	1,436	1,439	1,442	1,445	1,448	1,451	1,454	1,457	1,46	1,463
L _c , м	1600	1640	1680	1720	1760	1800	1840	1880	1920	1960
Y _а , д,ед	0,039	0,036	0,037	0,039	0,036	0,038	0,035	0,036	0,04	0,042
Y _{c1} , д,ед	0,401	0,406	0,411	0,416	0,367	0,372	0,377	0,382	0,396	0,39
							TINTIT			

Примечание * - давление на устье, которое необходимо создать УЭЦН