МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

«САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНОЛОГИЧЕСКИЙ УНИВЕРСИТЕТ РАСТИТЕЛЬНЫХ ПОЛИМЕРОВ»

В.М. Максимов, М.Н. Полянский, С.А.Поржецкий

ФИЗИКА

Индивидуальные задания для самостоятельной работы студентов

Часть 1. МЕХАНИКА

Учебно-методическое пособие

Санкт-Петербург 2015 УДК 53 (075) М 171 ББК 22.3

Максимов В.М., Полянский М.Н., Поржецкий С.А. Физика. Часть 1. Механика. Индивидуальные задания для самостоятельной работы студентов: учебно-методическое пособие /под ред. доц. В.М.Максимова; СПбГТУРП.- СПб., 2015.- 44 с.

Учебно- методическое пособие содержит десять тем по разделу «Механика». Каждая тема содержит 100 вариантов заданий, что позволяет активизировать самостоятельную работу студентов. Пособие предназначено для студентов дневного и вечернего отделений всех направлений и специальностей, изучающих физику.

Рецензент: доцент кафедры физики СПбГТУРП, канд. физ-мат наук В.О. Кабанов.

Подготовлено и рекомендовано к печати кафедрой физики-Санкт-Петербургского государственного технологического университета растительных полимеров (протокол № 7 от 23.04.15).

Утверждено к изданию методической комиссией института энергетики и автоматизации СПбГТУРП (протокол № 6 от 06. 05.15).

© Санкт-Петербургский государственный технологический университет растительных полимеров, 2015

ПРАВИЛА ВЫПОЛНЕНИЯ И ОФОРМЛЕНИЯ ЗАДАНИЯ

Задание выполняется в отдельной тетради, каждая задача начинается с новой страницы. На обложке тетради указывается фамилия студента, номер учебной группы и номер варианта задания (дается преподавателем).

Студент выполняет по одной задаче из каждой темы.

Вторая цифра варианта указывает номер задачи, а первая цифра – номер условия данной задачи в таблице.

Текст условия задачи должен быть отредактирован в соответствии с конкретным вариантом и содержать все численные данные.

В темах 1, 3, 6, 7. 8 номер задачи указывает номер данных из табл. 1, номер условия— из табл. 2. В темах 3 и 6 по указанию преподавателя выполняется вариант А или Б.

Если наименования величин не указаны, то они даны в системе единиц измерений СИ.

Все необходимые графики и чертежи выполняются точно в выбранном масштабе.

Решение должно быть полным. Задача должна быть, как правило, решена в общем виде с последующими числовыми расчетами. При защите задания студент должен уметь объяснить решение любой задачи, знать и понимать физические законы, знать определения и свойства физических величин, которыми он пользовался.

ТЕМА 1. ПРЯМОЛИНЕЙНОЕ ДВИЖЕНИЕ

Кривая, описываемая телом при движении, называется $mpa-e\kappa mopue \ddot{u}$. Если траектория прямая, то движение прямолинейное. Положение тела на прямой в момент времени t определяется координатой X(t). Пройденный путь ΔS легко найти, зная координаты тела в начальный и конечный моменты времени t_1 и t_2 .

$$\Delta S = X_2 - X_1.$$

Скорость - это путь, пройденный за единицу времени.

Средняя скорость:

$$V_{cp} = \frac{\Delta S}{\Delta t} = \frac{X_2 - X_1}{t_2 - t_1} \quad .$$

Mгновенная скорость — это предел средней скорости при Δ t \to 0 . Она равна производной от пути или координаты по времени:

$$V = \lim \frac{\Delta s}{\Delta t} = \frac{ds}{dt} ,$$

$$\Delta t \to 0$$

Ускорение - это изменение скорости за единицу времени. Среднее ускорение :

$$a_{cp} = \frac{\Delta V}{\Delta t} = \frac{V_2 - V_1}{t_2 - t_1}$$
.

Мгновенное ускорение:

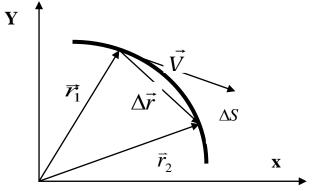
$$a = \lim \frac{\Delta V}{\Delta t} = \frac{dV}{dt} \quad .$$

$$\Delta t \to 0$$

ЗАДАЧИ К ТЕМЕ 1

Движение тела вдоль прямой описывается уравнением $x=A+B\cdot t+C\cdot t^2+D\cdot t^3$. От момента времени t_1 до t_2 тело проходит путь s. Средняя скорость и среднее ускорение на этом интервале

 v_s и a_s . v_1 , a_1 , v_2 , a_2 – скорость и ускорение в моменты времени t_1 и t_2 . Данные берутся из табл. 1 (номер задачи) и табл. 2 (номер варианта условия) . Найти путь s и все скорости и ускорения (кроме заданных).


Таблица 1

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
t_1	0,7	0,5	1,5	2,0	1,2	0,6	1,7	2,2	1,0	1,4
A	2	1	0,5	2,5	3,0	1,5	-0,5	0,8	0,4	1,2
В	-	-	0,7	-	-	1,2	-	-	-0,5	1,0
v_1	0,8	-	-	1,5	0,5	-	-	1,2	-	-
v_2	0,2	-0,4	4,0	-	-	0,6	8,0	-	-	3,0
v_s	_	0,3	-	2,0	5,0	0,8	4,0	7,0	6,0	4,0

Таблица 2

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
t_2	7,0	11,0	6,0	8,0	10,0	7,5	9,0	8,5	10,5	6,5
C	-	-	ı	ı	-	ı	ı	-	ı	ı
D	-	0,02	-	-	-	-	-	0,02	1	1
a_1	-	-	-	0,2	-	-0,3	-	-	0,5	1
a_2	-	-	0,8	ı	1,2		ı	-	-	0,5
a_{s}	-1,0	_	-	-	-	-	1,5	_	-	-

ТЕМА 2. КРИВОЛИНЕЙНОЕ ДВИЖЕНИЕ

Положение точки на плоскости и в пространстве может быть задано радиус-вектором

 $\vec{r}(t)$.

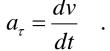
Вектор, проведенный из начальной точки в конечную, называется вектором перемещения.

 $\Delta \vec{r} = \vec{r}(t_2) - \vec{r}(t_1)$ Скорость - это производная от радиус - вектора по времени

$$\vec{V} = \frac{d\vec{r}}{dt} \,.$$

Вектор скорости всегда направлен по касательной к траектории и по величине равен пути, пройденному телом за единицу времени. Движение точки можно описать, задавая координаты точки X(t) и Y(t) (проекции радиус - вектора на оси X и Y). Тогда проекции вектора скорости:

$$V_x = \frac{dx}{dt}, V_y = \frac{dy}{dt}$$
.


Величина скорости

$$V = \sqrt{{V_x}^2 + {V_y}^2} \quad .$$

Ускорение - это изменение вектора скорости за единицу времени:

$$\vec{a} = \frac{d\vec{v}}{dt}, \qquad a_x = \frac{dv_x}{dt}, \qquad a_y = \frac{dv_y}{dt}.$$

Изменение величины скорости даёт составляющую ускорения, направленную по касательной. Эта составляющая называется mангенциальным ускорением a_{τ} :

 \vec{a}_{τ} \vec{a}

Изменение направления скорости дает составляющую ускорения, направленную перпендикулярно к касательной, называемую *нормальным ускорением* a_n :

$$a_n = \frac{v^2}{R}$$
, где R - радиус кривизны траектории. Полное уско-

рение равно векторной сумме нормального и тангенциального ускорения:

$$\vec{a} = \vec{a}_n + \vec{a}_\tau$$
.

Для прямолинейного движения $R = \infty$, $a_n = 0$, $a = a_\tau$. При нахождении тангенциального ускорения можно использовать скалярное произведение векторов скорости и ускорения:

$$(\vec{v} \cdot \vec{a}) = v \cdot a_{\tau} = v_{x} a_{x} + v_{y} a_{y}.$$

При описании вращательного движения твердого тела используют угол поворота φ , угловую скорость $\omega = d\varphi/dt$ и угловое ускорение $\varepsilon = d\omega/dt$. Угловые величины одинаковы для всех точек вращающегося тела. Зная расстояние r точки от оси вращения можно найти линейные величины: $S = \varphi \cdot r$, $v = \omega \cdot r$,

$$a_{\tau} = \varepsilon \cdot r$$
, $a_n = \omega^2 \cdot r$.

ЗАДАЧИ К ТЕМЕ 2

2.1. Твердое тело вращается с угловым ускорением \mathcal{E} и начальной угловой скоростью ω_0 . Через время t после начала вращения вектор полного ускорения точки тела, находящейся на расстоянии R от оси, составляет угол α с направлением скорости. V_t и ω_t - линейная и угловая скорости в этот момент времени. a, a_n , a_{τ} - полное, нормальное и тангенциальное ускорения в этот момент времени.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
ω_0	-	0,2	-	0,3	0,2	0,4	-	0,1	0,12	-
t	2	3	-	-	3	5	-	ı	2	1,5
\mathcal{E}	0,04	-	-	0,1	-	-	-	-	-	0,1
α	45°	70°	30°	60°	-	45°	30°	36°	-	60°
ω_t	_	-	_	_	0,5	-	_	0,8	0,2	_

R	-	-	5	-	-	-	2	-	-	-
a_n	-	-	0,8	-	-	-	1,6	-	-	1
Найти	ω_0	ω_t	\mathcal{E}	t	α	ω_t	\mathcal{E}	t	α	ω_0

2.2. Точка движется по кривой так, что ее координаты на плоскости описываются уравнениями: $X = A_1 + B_1 t + C_1 t^3$,

$$Y = A_2 + B_2 t + C_2 t^2$$
.

Найдите перемещение точки за время от 0 до t, а также скорость, полное, нормальное и тангенциальное ускорения точки в момент времени t.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
t	4,0	5,0	2,0	3,0	5,0	3,0	2,0	4,0	6,0	7,0
A_1	2,0	1,0	3,0	3,0	2,0	1,0	2,0	5,0	4,0	3,5
B_1	0,3	0,2	0,5	0,8	0,1	-0,2	1,5	2	-0,1	-0,1
C_1	0,01	0,01	0,1	0,1	0,02	0,02	0,25	-0,1	0,01	0,02
A_2	1	2	2	2	3	2	5	3	2,5	2
B_2	0,2	0,4	0,3	-0,5	0,5	0,3	-2	0,75	0,3	-0,2
C_2	0,02	0,4	0,8	1,0	-0,4	0,05	2	1,5	0,5	0,04

2.3. Точка движется по окружности радиуса R так, что величина скорости точки изменяется по закону: $V = At + Bt^2$.

В момент времени t полное ускорение равно a, нормальное и тангенциальное a_n и a_{τ} , соответственно. α — угол между векторами полного ускорения и скорости.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
A	1,0	1,0	-	1,0	0,5	-	0,5	2,0	0,4	2,0
В	0,2	0,5	-	2	0,25	-	1	1	0,2	0,5
t	-	2,0	2,0	1,0	-	1,0	-	4,0	-	2,0
а	3,5	5	5	6	-	10	8	-	10	-
a_{τ}	3	-	4	-	3	-	-	-	_	-
α	-	-	-	-	-	30 °	45 ⁰	-	60^{0}	-

R	-	4	10	-	10	5	-	50	-	10
Найти	t, R	α, a_n	<i>A</i> , <i>B</i>	α,R	a, t	<i>A</i> , <i>B</i>	t, R	a, α	t, R	a_n , a

2.4. Точка вращается по окружности радиуса R с угловой скоростью: $\omega = \omega_0 + A \cdot t^2$. В момент времени t угловое ускорение точки \mathcal{E} , линейная скорость V, полное, нормальное и тангенциальное ускорения a, a_n , $a_ au$. Угол между векторами ускорения и скорости равен α .

Физ.]	Вариа	НТЫ				
велич.	0	1	2	3	4	5	6	7	8	9
ω_0	-	-	-	-	0,2	-	-	ı	-	-
A	0,02	0,03	0,04	0,02	0,01	-	0,05	0,03	-	0,05
t	-	4	5	10	5	6	-	4	-	-
R	2	-	5	-	3	2	2	-	2	-
V	_	-	_	6	_	-	_	4	-	ı
а	1	2	3	-	-	1,5	4	-	5	4
a_n	-	1,5	-	-	_	-	-	-	-	-
a_{τ}	-	-	-	0,8	-	-	-	-	-	3
а(град)	60	-	-	-	-	60	30	45	60	-
Найти	t,	R,	V,	ω_0 ,	a,	ω_0 ,	t,	a,	V,	t,
	V	\mathcal{E}	α	R	α	A	ω_0	R	\mathcal{E}	R

2.5. Угловая скорость маховика зависит от времени t согласно уравнению: $\omega = A \cdot t + B \cdot t^2$. Для точки маховика, находящейся на расстоянии R от оси , найти скорость, полное, тангенциальное и нормальное ускорения в момент времени t.

Физ.		Варианты										
велич.	0	0 1 2 3 4 5 6 7 8 9										
A	0,5	0,6	0,7	0,2	0,8	1,0	1,2	0,6	0,4	0,1		
В	0,1	-0,1	0,2	0,1	0,2	-0,2	0,5	0,4	0,1	0,2		

R	0,2	0,1	0,15	0,3	0,2	0,1	0,12	0,14	0,25	0,4
t	2,0	2,5	1,4	3,0	2,0	0,7	0,8	1,0	2,0	4,0

2.6. Тело брошено горизонтально на высоте $h_0 = 120$ м со скоростью v_0 . Через время t оно движется со скоростью v под углом α к горизонту на высоте h. a_n , a_{τ} , R – нормальное, тангенциальное ускорение и радиус кривизны траектории в этот момент. Сопротивлением воздуха пренебречь.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
v	30	-	-	-	20	-	-	40	-	-
h	-	75	-	-	-	40	-	-	-	100
t	-	-	2	-	1,4	-	2,5	-	-	-
a_n	-	-	5	8	-	-	6	-	-	-
a_{τ}	7	-	-	-	-	8	-	-	8	-
α	-	55°	-	-	-	-	-	30°	-	20°
R	-	-	-	50	-	-	-	-	70	-
Найти	$v_{0,}$	$a_{n,}$	R,	$v_{0,}$	R,	R,	V,	R,	$v_{0,}$	$v_{0,}$
	h	v	a_{τ}	t	h	v_0	v_0	h	h	R

2.7. Точка движется со скоростью V . Ускорение a направлено под углом α к скорости. R - радиус кривизны траектории, a_{τ} - тангенциальное ускорение.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
v	-	5,0	3,0	4,0	5,0	2,0	-	4,0	3,0	4,0
а	4	-	3	-	4	3	5	-	2	-
a_{τ}	-	3	2	-	-	-	3	2	1	2
α	30°	-	-	60°	45°	-	-	_	_	-

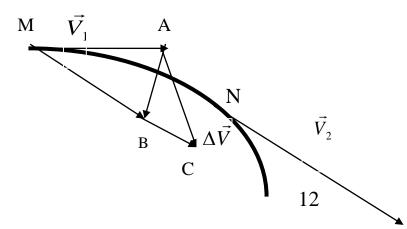
R	2	10	-	8	-	2	4	8	-	4
Найти	ν	а	$a_{n,}$ R	a_{τ}	R	α	ν	а	R	α

2.8. Точка движется по кривой так, что её координаты описываются уравнениями $x = Acos\phi$, $y = Bsin\phi$, где $\phi = \phi_0 + \omega t + \beta \cdot t^2$. Для момента времени t найти скорость, полное, нормальное и тангенциальное ускорение. Найти перемещение точки за время от 0 до t.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
A	2,0	3,0	1,0	4,0	5,0	1,5	2,5	1,7	1,4	2,0
В	3,0	4,0	1,5	2,0	4,0	2,0	3,0	2,0	1,0	2,0
t	2,0	3,0	1,5	2,5	4,0	2,0	3,0	2,0	4,0	2,0
φ_0	0,5	0,3	1,0	1,5	0,7	0,6	1,2	3,0	2,5	1,2
ω	0,3	0,5	0,6	0,7	0,2	0,4	0,8	1,2	2,0	1,5
β	0,1	0,15	0,2	-0,1	0,1	0,2	-0,1	-0,2	0,1	-0,1

2.9. Проекции скорости изменяются согласно уравнениям $V_x = A + B \cdot t + C \cdot t^2$, $V_y = D + K \cdot t + M \cdot t^3$. Найти полное, нормальное, тангенциальное ускорение и радиус кривизны траектории в момент времени t.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
A	0,5	0,3	0,8	1,5	0,6	3,0	5,0	1,2	2,5	4,0
В	0,1	0,05	0,04	-0,1	0,15	-0,2	-0,1	0,2	0,5	2,0
C	0,02	0,01	0,03	0,01	0,1	0,02	0,01	0,05	-0,1	3,0
D	0,2	0,6	0,2	-0,5	1,2	2,5	4,0	8,0	0,5	7,0
K	-0,1	-0,2	0,5	0,1	0,05	-0,2	-0,1	-0,5	0,75	-2,0
M	0,05	0,03	-0,1	0,01	0,02	0,01	0,01	0,03	-0,1	4,0


_											
	t	2	2	5	7	4	10	12	6	2	0,7

2.10. Тело движется по кривой со скоростью V и ускорением a, составляющем угол α с вектором скорости. Радиус кривизны траектории в этой точке R. Проекции скорости и ускорения на оси координат V_x , V_y , a_x , a_y . Нормальное и тангенциальное ускорение a_n , a_τ .

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
V	-	8	-	-	10	4	-	-	5	-
V_{x}	4	-	6	-	-	-	5	6	-	7
V_{y}	3	5	8	-	ı	3	5	4	3	4
R	25	-	-	30	25	-	-	-	-	16
а	2	-	5	-	-	-	-	5	-	-
a_x	-	3	_	4	-	2	-	3	5	-
$a_{\rm y}$	-	4	-	3	-	4	_	-	7	-
a_n	-	-	-	-	-	-	3	-	-	-
a_{τ}	-	-	-	-	3	-	5	-	-	3
α	-	-	30°	20°	-	-	-	-	60°	-
Найти	a_{τ} ,	R,	R,	V,	a,	R,	$a_{x,}$	α,	a_n ,	$a_{x,}$
	α	a_{τ}	a_{τ}	a	α	a_{τ}	a_{y}	R	a_{τ}	a_{y}

ТЕМА 3. УСКОРЕНИЕ ПРИ КРИВОЛИНЕЙНОМ ДВИЖЕНИИ

Пусть за малый промежуток времени Δt переместилась из точки М в точку N. V_1

материальная точка и V_2 - вектора скорости в этих точках. Перенесём вектор V_2 параллельно из точки N в точку M.

Вектор полного изменения скорости $\overrightarrow{\Delta V} = \overrightarrow{V}_2 - \overrightarrow{V}_1$.

Если вдоль вектора MC отложить вектор MB, величина которого равна V_I , то вектор AB определяется изменением только направления скорости, а вектор BC — изменением величины скорости. Для малых Δt $|AB| = a_n \Delta t$, $|BC| = V_2 - V_I = a_\tau \Delta t$.

ЗАДАЧИ К ТЕМЕ 3

3.А. За время Δt скорость тела изменилась от V_1 до V_2 и вектор скорости повернулся на угол $\Delta \alpha$. Определить средние значения полного, нормального и тангенциального ускорения за этот интервал времени. Задачу решить графически. Графическое построение выполнить в масштабе: в 1 см -2 м/с. Рассчитать радиус кривизны траектории.

Таблица 1

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
V_I	14	16	18	20	22	14	16	18	20	22
α	5°	7°	10°	12°	5°	8°	10°	12°	6°	9°

Таблица 2

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
V_2	20	16	18	20	15	14	15	20	18	16
Δt	0,4	0,3	0,5	0,6	0,2	0,7	0,8	0,25	0,3	0,5

3.Б. В некоторый момент времени скорость тела равна V_1 . Определить величину и направление скорости через малый интервал времени Δt , если известны средние значения нормального и тангенциального ускорения a_n , a_{τ} . Задачу решить графически. Масштаб: в 1 см - 2 м/с.

Таблица 1

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
V_{I}	14	16	18	20	22	14	16	18	20	22
a_n	7	10	8	6	15	5	4,5	10	9	8
Δt	0,4	0,3	0,5	0,6	0,2	0,7	0,8	0,25	0,3	0,5

Таблица 2

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
a_{τ}	7	-7	8	-6	5	-5	-8	4	9	-4

ТЕМЫ 4, 5, 6. ЗАКОНЫ ДИНАМИКИ

Основным законом динамики является второй закон Ньютона: ускорение тела прямо пропорционально силе, действующей на тело, и обратно пропорционально массе тела.

$$\vec{a} = \frac{\vec{F}}{m} \,.$$

Здесь F - векторная сумма всех сил, действующих на тело. При решении задач удобно записывать закон в такой форме:

$$m\vec{a} = \sum \vec{F}_i$$
.

Или в проекциях на оси: $ma_x = \Sigma F_{i,x}$; $ma_y = \Sigma F_{i,y}$. Если система состоит из нескольких тел, то закон записывается для каждого тела.

Импульс тела - это:
$$\vec{k} = m\vec{v}$$

Второй закон Ньютона можно сформулировать так: изменение импульса тела за единицу времени равно сумме сил, действующих на тело:

$$d\vec{k}/dt = \sum \vec{F}_i$$
.

3акон $coxpaнeния \, umnyльca: \,$ в изолированной системе суммарный импульс не изменяется: $\sum \vec{k_i} = const$.

Это - векторный закон. Для удара двух тел его можно записать так:

 $\vec{k}_1 + \vec{k}_2 = \vec{k}_1' + \vec{k}_2'$, где k_1 и k_2 - импульсы тел до удара, а \vec{k}_1' и \vec{k}_2' - импульсы тел после удара.

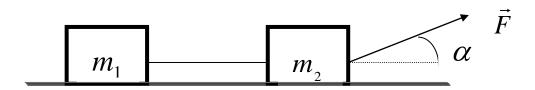
Механическая энергия при ударе обычно не сохраняется, так как часть ее переходит во внутреннюю энергию соударяющихся тел. Удар, при котором механическая энергия сохраняется, называется *упругим*. При абсолютно неупругом ударе тела после удара двигаются вместе с одинаковой скоростью.

Закон всемирного тяготения

$$F = \gamma \frac{mM}{r^2}$$

позволяет найти ускорение свободного падения на поверхности любой планеты. M – масса планеты, R - ее радиус. Тогда сила тяжести на поверхности: mM

 $mg_0 = \gamma \frac{mM}{R^2} \,.$

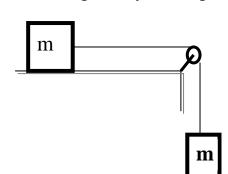

Энергия mела — это физическая величина, характеризующая способность тела совершать работу. Изменение энергии тела равно работе внешних сил: E_2 - $E_1 = A$.

Имеется два вида механической энергии: *кинетическая энергия* – энергия движения тела и *потенциальная энергия* - энергия взаимодействия тел или частей тела. Полная механическая энергия

 $E=E_{\kappa u H}+E_{nom}$ В замкнутой системе она сохраняется, если нет перехода механической энергии в другие (немеханические) формы, например, во внутреннюю. Такие системы называются консервативными. Для произвольной системы закон изменения энергии может быть записан в виде: E_2 - E_1 = A+Q , где A – работа внешних сил; Q - количество механической энергии, перешедшей во внутреннюю (количество выделившегося тепла).

ЗАДАЧИ К ТЕМЕ 4

4.1 Два бруска массами m_1 и m_2 , соединенные шнуром, лежат на столе. На первый брусок действует сила F, направленная под углом α к горизонту. Коэффициент трения брусков о стол μ =0,1. Ускорение брусков a, сила натяжения шнура – $F_{\scriptscriptstyle H}$. Через время t после начала действия силы скорость брусков V, суммарный импульс и кинетическая энергия K и $E_{\scriptscriptstyle K}$.


Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m_1	1	2	2	-	3	2	10	4	-	-
m_2	4	-	3	-	5	5	4	-	3	2
F	-	10	20	50	20	30	-	15	10	30
$F_{\scriptscriptstyle{\mathcal{H}}}$	10	-	-	30	-	-	-	8	-	10
α	6°	20°	12°	15°	30°	15°	10°	12°	24°	18°
V	-	-	-	-	-	-	30	-	20	-
t	3	-	5	-	10	8	6	-	14	-
a	-	3,5	-	3	-	-	-	-	-	-
Найти	а,	$m_{2,}$	К,	m_1 ,	$F_{\scriptscriptstyle{H,}}$	a,	К,	$m_{2,}$	$m_{I,}$	$m_{I,}$
	$\boldsymbol{\mathit{F}}$	$F_{\scriptscriptstyle H}$	$F_{\scriptscriptstyle{\mathcal{H}}}$	m_2	E_{κ}	E_{κ}	F	a	$F_{\scriptscriptstyle H}$	E_{κ}

4.2. На наклонной плоскости с углом наклона α лежит доска массой m_1 , к доске приложена сила F, направленная вверх

вдоль плоскости. Коэффициент трения доски о плоскость - μ . Найдите ускорение доски.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m_1	1,0	2,0	2,0	5,0	3,0	2,0	5,0	4,0	10,0	2,0
F	3,0	4,0	1,0	8,0	2,0	5,0	3,0	30,0	2,0	5,0
μ	0,1	0,05	0,02	0,06	0,1	0,05	0,1	0,05	0,1	0,05
α	12°	24°	45°	15°	30°	20°	18°	24°	30°	18°

4.3. На столе лежит брусок массой m_2 , к нему привязана нить, перекинутая через блок, к концу которой привязана гиря

массой m_I . Массой блока, нити и трением в блоке можно пренебречь. F_{H} — сила натяжения нити, a — ускорение тел, V — скорость тел через время t после начала движения, μ — коэффициент трения бруска о стол.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m_1	-	3	2	3	2	-	-	2	4	-
m_2	2	4	3	2	-	-	2,5	-	3	5
а	-	-	-	3	4	2	-	3	-	-
V	15	-	-	-	-	-	-	-	-	20
t	3	-	2	-	-	-	-	4	-	5
$F_{\scriptscriptstyle \mathcal{H}}$	-	-	-	-	-	20	15	-	24	30
μ	0,2	0,3	0,15	-	0,3	0,25	0,2	0,15	-	-
Найти	$m_{l,}$	a,	V,	μ ,	$m_{2,}$	$m_{l,}$	$m_{l,}$	$m_{2,}$	μ ,	$m_{I,}$
	$F_{\scriptscriptstyle \mathcal{H}}$	$F_{\scriptscriptstyle H}$	$F_{\scriptscriptstyle \mathcal{H}}$	$F_{\scriptscriptstyle{\mathcal{H}}}$	$F_{\scriptscriptstyle{\mathcal{H}}}$	m_2	a	V	a	μ

4.4. Две гири массами m_1 и m_2 ($m_1 > m_2$) соединены нитью, перекинутой через невесомый неподвижный блок, причем гиря меньшей массы расположена по высоте на h ниже более тяжелой гири. Если предоставить гирям двигаться под действием силы тяжести, то через время t гири окажутся на одной высоте. Гири движутся с ускорением a, натяжение нитей T. Трение в блоке отсутствует.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m_1	2,0	1,1	-	1,5	-	0,3	-	0,4	3,0	2,5
m_2	1,0	0,9	2,0	-	0,2	-	0,3	-	2,5	-
а	-	-	1,8	-	-	2,5	4,8	-	-	-
T	-	-	-	-	2,5	-	-	2,0	-	-
h	-	2,0	-	3,0	-	-	2,5	1,5	-	2,0
t	-	-	-	1,2	-	-	-	-	-	2,0
Найти	а	t	m_1	T	m_1	m_2	T , m_1	a,t	<i>T</i> , <i>a</i>	m_2

4.5. На высоте h над поверхностью планеты по круговой орбите вращается спутник. Скорость спутника V, период обращения вокруг планеты T. Масса планеты M, радиус планеты R. Ускорение свободного падения на поверхности планеты - g_0 .

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
$M \cdot 10^{-23}$	-	1,0	-	-	0,73	-	-	100	10	-
$R \cdot 10^{-6}$	6,4	-	-	6,4	1,74	5,0	3,0	8,0	4,0	3,0
$h\cdot 10^{-6}$	3,2	1,0	-	1,6	1,74	3,0	2,0	-	4,0	2,5
V,км/с	6,5	2,0	-	-	-	-	-	3,0	-	6,0
Т, мин	-	-	105	-	-	70	100	-	-	-

80	-	-	9,8	9,8	-	-	-	-	-	-
Найти	M	R	h	V	T	g_0	M	h	V	g_0

4.6. Тело массой m движется под углом α к горизонту вверх со скоростью V. На тело действует сила сопротивления F. Полное, нормальное и тангенциальное ускорение тела a, a_n , a_τ . Радиус кривизны траектории R.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m	2,0	1,5	-	0,8	0,4	0,3	0,2	0,7	3,0	2,5
$\alpha(rp)$	12	24	45	36	-	60	18	24	30	-
a	-	-	13	-	-	2,5	14	-	-	-
a_{τ}	-	9,0	-	-	-	-	-	4	-	5,0
F	10	-	2	7	1,0	0,6	-	-	10	5,0
V	20	-	-	14	20	-	-	-	-	-
R	-	-	-	-	50	-	40	-	-	60
Найти	a,R	F	m	R,a	α , a	a_{τ}	V,F	F	а	V

4.7. Мяч массой m, летящий со скоростью V_I , ударяется о стол под углом α к вертикали и отскакивает по тем же углом со скоростью V_2 . Длительность удара Δt , средняя сила удара F.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m	-	0,5	0,8	0,4	0,3	-	0,2	0,4	0,25	0,6
V_{I}	10	-	12	15	20	16	-	14	20	40
V_2	8	8	12	10	12	12	4	8	10	30
α	30°	45°	-	20°	24°	60°	36°	-	0°	50°
Δt	0,1	0,2	0,05	-	0,1	0,2	0,15	0,1	-	0,05
F	80	100	120	150	-	200	60	140	120	-

4											,
	Найти	m	V_1	α	Δt	F	m	V_1	α	Δt	F

4.8. На тело массой m действуют две постоянные силы F_1 и F_2 под углом α друг к другу. В начальный момент времени скорость тела V_1 совпадает по направлению с силой F_1 . Найдите ускорение тела и его скорость через время Δt .

Физ.					Bapı	ианть	J			
велич.	0	1	2	3	4	5	6	7	8	9
m	1,5	0,5	0,8	0,4	3,0	1,5	1,2	0,4	2,5	0,6
F_1	2	10	12	15	12	3	6	14	12	7
F_2	6	8	12	15	16	5	12	8	6	7
α	30°	90°	120°	60°	180°	50°	150°	50°	180°	150°
Δt	2,0	0,2	0,5	0,4	5,0	0,8	1,5	0,1	0,5	2,5
V_1	6	7	10	10	12	6	5	8	2	30

4.9. Тело массой m движется по окружности радиуса R. Скорость тела изменяется по закону $V = A + B \cdot t + C \cdot t^2$. В момент времени t на тело действует сила F, и скорость тела равна V.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m	0,5	0,7	1,2	2,5	0,8	0,6	1,5	0,4	-	1,6
F	-	1,4	3,0	2,0	-	1,8	3,0	-	1,2	4,8
V	-	-	5,0	-	-	-	7,0	8,0	-	5,0
A	2,0	-	-	5,0	5,0	2,0	2,0	-	5,0	3,0
В	-0,5	0,6	-	0,2	-0,1	0,4	-	0,3	-0,2	0,5
C	0,1	0,1	0,0	0,1	0,2	-0,1	-	0,2	-0,1	-
t	2	3	2	2	3	2	2	1,4	4	-
R	2	3	20	-	50	-	40	80	5	10

Найти F A A ,	$R \mid R \mid F$	R B,C R	$F \mid m \mid t$
---------------------	-------------------	-------------	-------------------

4.10. Автомобиль движется по выпуклому (вогнутому) мосту с радиусом кривизны R. Скорость автомобиля V, масса m, сила давления на мост N.

					Вари	анты				
Физ.	0	1	2	3	4	5	6	7	8	9
велич.					MC	СТ				
	вог.	вып.								
Ν, κΗ	-	7,0	10,0	5,0	12,0	8,0	10,0	-	15,0	14,0
$m \cdot 10^{-3}$	1,0	-	0,8	0,8	-	1,4	0,7	2,0	1,0	2,0
V	30	20	-	25	30	ı	20	30	-	17
R	120	100	100	-	150	200	-	200	100	-
Найти	N	m	V	R	m	V	R	N	V	R

ЗАДАЧИ К ТЕМЕ 5

5.1. Из пружинного пистолета с жесткостью пружины k стреляют вверх пулей массой m. Поднявшись на высоту h, пуля имеет скорость V. Сжатие пружины заряженного пистолета -x.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
<i>k</i> , к <i>H</i> /м	1,5	2,0	1,2	2,5	-	3,0	1,25	2,0	0,8	-
х, см	8	6	7	-	10	7	8	6	-	10
т, г	7	5	-	8	6	10	3	1	2	5
V	-	0	30	20	40	-	25	20	14	30
h	0	-	20	30	25	35	-	30	20	15

	Найти	V	h	m	X	k	V	h	m	X	k
--	-------	---	---	---	---	---	---	---	---	---	---

5.2. Пуля массой m, летевшая со скоростью V_1 , пробивает доску толщиной h и вылетает со скоростью V_2 . Средняя сила сопротивления, действующая на пулю, F, работа силы сопротивления A. Кинетическая энергия пули до удара $-E_1$, при вылете из доски $-E_2$.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
т, г	-	10	12	15	8	14	10	12	20	10
V_{I}	400	-	-	500	300	400	-	600	300	400
V_2	300	200	-	-	200	300	250	-	140	-
F , κH	2,5	-	4,0	-	2,0	-	3,0	4,5	-	3,5
<i>h, см</i>	10	-	15	20	-	-	25	20	30	-
A	-	400	_	-	-	-	-	-	-	-
E_1	-	-	900	-	-	-	-	-	-	-
E_2	-	-	-	800	-	-	-	-	-	300
Найти	m	V_{I}	V_2	F	h	A	E_{I}	E_2	F	h

5.3. Тело массой m под действием силы увеличивает на пути S свою скорость от V_1 до V_2 . На всем пути действует сила сопротивления F_c . Кинетическая энергия тела в начале пути - E_1 , в конце пути – E_2 . Работа силы тяги – A.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m	2,0	-	1,5	2,5	3,0	2,0	3,5	4,0	3,0	2,0
S	10	20	-	20	15	25	20	12	30	20
V_{I}	2	3	-	-	-	5	4	-	-	-
V_2	6	8	10	7	-	10	-	12	-	15
F_c	2	3	2,5	1,5	4	-	5	6	4	3
A	ı	100	120	80	150	200	140	-	250	120

E_{I}	-	-	25	-	20	-	-	100	-	-
E_2	ı	-	-	-	-	-	-	ı	200	ı
Найти	A	m	S	\overline{V}_{1}	V_2	F_c	E_2	A	\overline{V}_1	\overline{E}_{1}

5.4. Из ствола автоматического пистолета вылетает пуля массой m со скоростью V. При этом затвор отходит на x и сжимает пружину жесткостью k. Максимальная сила упругости сжатой пружины F_m . Масса затвора M. Кинетическая энергия пули – E_κ .

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
т, г	9	10	8	12	10	8	-	11	-	12
V	-	140	200	-	120	-	-	-	200	1
х, см	5	6	-	4	-	6	4	7	6	ı
$k \cdot 10^{-3}$	2,0	-	1,8	-	-	1,5	-	-	2,5	1,6
M	0,25	0,2	-	0,24	0,18	0,22	0,2	0,24	0,15	0,3
F_m	-	-	120	-	100	-	120	80	-	ı
E_{κ}	_	-	-	200	-	-	160	-	-	250
Найти	E_{κ}	F_m	M	k	x	V	m	E_{κ}	m	х

5.5. Камень массы m , летевший со скоростью V_1 на высоте h, упал на землю со скоростью V_2 . Работа сил сопротивления A.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m	-	2,0	3,0	4,0	2,5	4,0	-	2,2	1,5	5,0
V_1	10	ı	15	10	8	ı	9	11	12	14
V_2	12	5	-	14	10	7	12	15	-	11
h	5	3	12	-	3	4	6	-	5	10
A	60	40	180	80	-	100	80	120	110	-
Найти	m	V_{I}	V_2	h	A	V_1	m	h	V_2	A

5.6. Ракета запускается в вертикальном направлении с поверхности планеты со скоростью v_I . На высоте h над ее поверхностью скорость ракеты равна v_2 . Всеми силами, кроме сил гравитационного взаимодействия, можно пренебречь. Радиус планеты R, ее масса M, ускорение свободного падения на ее поверхности g. Первая и вторая космические скорости для планеты V_I и V_{II} . Радиус Земли $R_3 = 6.4 \cdot 10^6$ м, масса Земли $M_3 = 6 \cdot 10^{24}$ к Γ . Все скорости даны в $\kappa m/c$, высота в Mm.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
v_1	ı	6,0	8,0	6,0	10,0	4,0	14,0	14,0	3,0	4,0
h	R/2	-	R	R	∞	2· <i>R</i>	-	3· <i>R</i>	1,0	-
v_2	3,0	0	-	2,0	6,0	-	10,0	10,0	-	1,0
R/R_3	1	1	-	-	1	0,5	4,0	-	0,4	-
M/M_3	1	-	_	0,5	-	0,11	-	-	-	-
g	-	-	-	-	-	-	8,8	-	3,3	-
V_I	-	-	8,0	-	-	-	-	-	-	3,4
V_{II}	-	11,2	_	-	-	-	_	-	_	-
Найти	v_1	h	v_2	R	M	v_2	h	V_{II}	v_2	h/R

5.7. Из пружинного пистолета с жесткостью пружины k стреляют пулей массой m. Пистолет лежит на плоской горизонтальной поверхности, и пуля скользит по ней. На расстоянии l от пистолета начинается подъём с углом наклона α . Скорость пули в начале наклонной поверхности V_l , поднявшись на высоту h, пуля имеет скорость V_2 . Сжатие пружины заряженного пистолета — x. Коэффициент трения μ , силу нормального давления на наклонной

поверхности можно считать равной силе тяжести. Отдачей пистолета можно пренебречь.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
k	150	50	120	75	-	100	125	40	80	-
х, см	3	-	2	-	4	7	3	6	7	8
т, г	12	6	-	8	10	20	15	5	12	5
l	2,5	2,0	1,5	1,0	2,0	-	1,2	1,8	-	3,0
V_{I}	2,0	-	-	1,7	-	3,0	-	-	-	4,0
V_2	1,0	1,0	0,0	1,0	0,7	1,4	1,2	-	1,7	2,5
h	-	0,1	0,2	0,07	0,15	-	0,15	0,05	0,2	0,25
α	6°	6°	3°	6°	9°	3°	6°	5°	9°	12°
μ	-	0,05	0,05	-	0,1	0,1	-	0,05	0,07	-
Найти	h	Х	m	Х	k	h,l	V_{I}	V_2	l	k

5.8. Орудие, закрепленное на железнодорожной платформе, производит выстрел вдоль полотна железной дороги под углом α к горизонту. Масса платформы с орудием m_1 , масса снаряда m_2 , снаряд вылетает со скоростью V_1 , платформа откатывается со скоростью V_2 и проходит до остановки расстояние S. Платформа до выстрела покоилась. Коэффициент сопротивления при движении платформы равен μ .

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
α	60°	0°	30°	20°	36°	45°	30°	15°	50°	40°
$m_1 \cdot 10^{-4}$	2,0	2,5	3,0	1,5	1,8	1,2	2,4	-	1,8	2,2
m_2	25	30	-	40	20	-	50	35	25	30
V_1	700	800	750	600	-	500	650	900	600	-
V_2	-	-	1,6	-	-	-	-	2	-	2,2

S	-	-	-	1,8	2,0	1,5	-	-	-	-
μ	-	0,1	-	-	0,08	0,12	0,05	-	0,15	-
Найти	V_2	S	m_2	μ	V_1	m_2	S	m_1	S	V_{1}

5.9. Человек массой m прыгает горизонтально с тележки массой M со скоростью V, совершая при этом работу A. Тележка после прыжка проходит до остановки расстояние S. Сила трения F_{mp} . Коэффициент трения равен μ .

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m	60	70	50	40	80	-	-	75	55	60
M	120	100	-	80	90	-	150	130	140	ı
V	-	3	2,5	4	-	2	-	2,8	-	2,2
A	400	-	300	-	-	250	320	-	360	200
S	2,4	2,0	-	-	4,5	2,2	2,8	2,0	1	5,0
F_{mp}	1	1	60	-	40	50	-	ı	30	ı
μ	ı	ı	-	0,02	ı	-	0,03	I	ı	ī
Найти	μ,	A,	S,	S,	A,	М,	m,	μ,	S,	μ,
	\dot{V}	F_{mp}	M	A	V	m	V	$\stackrel{\cdot}{A}$	V	M

5.10. Автомобиль массой m двигается по горизонтальному пути с постоянной скоростью V_0 , а затем поднимается с углом наклона α со скоростью V. Мощность двигателя N автомобиля постоянна. Сила трения при подъеме F_1 , а на горизонтальном участке – F_0 .

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
т, т	2,0	-	1,6	1,2	-	3,0	5,0	1,8	2,2	4,0
V_0	ı	16	-	25	15	20	30	ı	28	24
V	10	10	12	-	8	15	-	10	14	14
а,град	18	12	6	9	12	6	15	9	12	6
N, кВт	-	-	-	-	100	-	-	-	-	-

F_0 , к H										
$F_{1,}$ к H	2,0	2,0	1,6	1,2	-	-	2,0	1,8	1,6	-
Найти	V_0	m	V_0	V	F_0	N	V	V_0	F_0	F_1

ЗАДАЧИ К ТЕМЕ 6

6.А. Первое тело массой m_1 движется со скоростью V_1 вдоль оси ОХ, а второе тело массой m_2 движется со скоростью V_2 под углом φ к оси ОХ. После удара тела двигаются вместе (абсолютно неупругий удар). Определить скорость и направление движения тел после удара (угол α с осью ОХ), а также количество выделившегося при ударе тепла. Задачу решить аналитически и графически, для чего построить векторную диаграмму импульсов. Численные данные берутся из табл. 1 и 2.

Таблица 1

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m_1	2,0	2,5	3,0	1,5	2,2	4,0	5,0	3,5	6,0	0,5
V_{I}	3	4	3	5	4	2,5	1,5	2	1,3	8

Таблица 2

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m_2	2,2	4,0	5,0	3,5	2,0	2,5	3,0	1,5	2,5	4,5
V_2	2	3	1,6	2,4	5	2	3	4	4	2
φ	15°	30°	120°	45°	150°	60°	90°	75°	105°	180°

6.Б. Тело массой m_1 движется со скоростью V_1 вдоль оси ОХ и сталкивается упруго с неподвижным телом массой m_2 . После удара первое тело движется со скоростью U_1 в направлении, составляющем угол φ_1 с осью ОХ. Найти массу m_2 , скорость U_2

и направление движения второго тела после удара (угол ϕ_2 с осью OX). Задачу решить аналитически и графически, для чего построить векторную диаграмму импульсов. Численные данные берутся из табл. 1 и 2.

Таблица 1

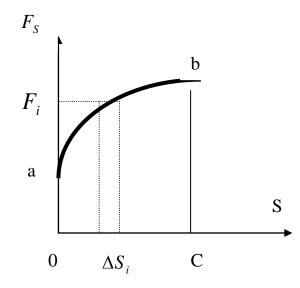
Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
V_{I}	4,0	6,0	5,0	5,5	8	10,0	9,0	8,0	8,0	6,0
U_{I}	3	5	3	4	2	2,5	4,5	3	6	3

Таблица 2

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m_1	2,0	4,0	5,0	3,0	2,0	2,5	3,0	4,0	3,0	5,0
φ_1	45°	30°	120°	45°	150°	60°	90°	75°	105°	180°

ТЕМА 7. РАБОТА ПЕРЕМЕННОЙ СИЛЫ

Работа постоянной силы $A = F \cdot S \cdot Cos \alpha = F_s S$, где α – угол между силой и перемещением, $F_s = F \cdot Cos \alpha$ - проекция силы на направление перемещения. Для вычисления работы переменной силы весь путь разбивают на малые участки ΔS_i так, чтобы на каждом участке силу F_i можно было считать постоянной. Тогда


элементарная работа на малом участке пути:

$$\Delta A_i = F_{i,s} \Delta S_i$$
.

Полная работа A на всем пути равна сумме элементарных работ на всех участках:

$$A = \sum \Delta A_i = \sum F_{i,s} \Delta S_i$$
.

В пределе при $\Delta S \rightarrow 0$ сумма переходит в интеграл:

$$A = \int F_s ds$$
.

На графике зависимости сильно тири элементарная работа изобразится площадью элементарного прямоугольника, а полная работа изображается площадью криволинейной трапеции.

ЗАДАЧИ К ТЕМЕ 7

На тело, движущееся вдоль оси ОХ, действует переменная сила $F = a + bx + cx^2$, направленная так же. Вычислить работу силы на пути от x=0 до x=s. Для этого построить график зависимости силы F от x, разбить путь на отрезки, такие, чтобы силу на отрезке можно было бы считать постоянной с погрешностью не более чем 5 %, и вычислить работу, считая силу на каждом отрезке постоянной.

Вычислить работу на этом же пути интегрированием и сравнить полученные значения.

Вычислить скорость тела в конце пути, если в начале пути она равна V_0 . Масса тела 2 κz . Числовые данные берутся из табл. 1 и 2.

Таблица 1

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
a	6,0	8,0	10	7,0	8,5	12	7,5	6,5	9,0	14
V_{O}	8	7	10	9	6	7	5	8	9	12

Таблица 2

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
b	0,2	-0,2	0,7	-0,8	1,0	-0,3	0,25	-0,2	0,5	-0,5
c	0,03	0,07	-0,1	0,4	-0,2	0,15	0,05	-0,1	-0,1	0,1
S	12	9	11	5	7	8	12	6	10	9

ТЕМЫ 8, 9, 10. ДИНАМИКА ВРАЩАТЕЛЬНОГО ДВИЖЕНИЯ

Основной закон динамики вращательного движения: угловое ускорение тела прямо пропорционально моменту действующих на тело сил и обратно пропорционально моменту инерции тела:

$$\varepsilon = \frac{M}{I}.$$

Момент инерции тела является мерой инертности тела при вращательном движении и играет роль массы тела. Он равен сумме моментов инерции всех бесконечно малых частей тела:

Момент силы характеризует вращательное действие силы и равен произведению силы на плечо: $M = F \cdot h$. Плечо h - это расстояние от оси вращения до линии действия силы.

Если тело не закреплено на оси, то *движение его центра инерции* определяется 2 - м законом Ньютона, а *вращение во-круг центра инерции* — основным законом динамики вращательного движения.

Кинетическая энергия вращающегося тела: $E_k = I \cdot \omega^2 / 2$.

Если тело катится, его полная кинетическая энергия равна сумме энергий вращения и поступательного перемещения центра инерции:

 $E_k = \frac{m \cdot v^2}{2} + \frac{I \cdot \omega^2}{2}$

Работа, совершаемая при вращении тела, может быть вычислена как $A = M \cdot \Delta \varphi$, где

а как $A=M\cdot \Delta \varphi$, где $\Delta \varphi$ - угол поворота тела. *Момент импульса* те- Oсновной закон дина- $\frac{dL}{dt}=M$. ла: $L=J\cdot \omega$. мики вращающегося тела можно записать как закон изменения момента импульса тела:

Для абсолютно твердых тел обе формы закона эквивалентны, но если момент инерции тела изменяется в процессе движения, то выполняется только закон изменения момента импульса.

Закон сохранения момента импульса: Если сумма моментов внешних сил равна нулю, то суммарный момент импульса системы тел постоянен:

$$\sum L_i = const.$$

ЗАДАЧИ К ТЕМЕ 8

Пластина, изображенная на рисунке, может вращаться вокруг оси OO', проходящей на расстоянии r от левого края пластины. Вычислить момент инерции пластины относительно этой "разделив" пластину на десять частей одинаковой ширины. Каждую часть принять за материальную точку. Общая ширина пластины 2 м. Поверхностная плотность пластины 2 $\kappa c/m^2$. Размеры пластины даны в табл. 1 и 2. На расстояниях x_1 , x_2 , x_3 от левого края пластины, перпендикулярно к ней, приложены силы F_1 , F_2 ,

 F_3 . Положительное направление сил от нас. Найти угловое ускорение пластины.

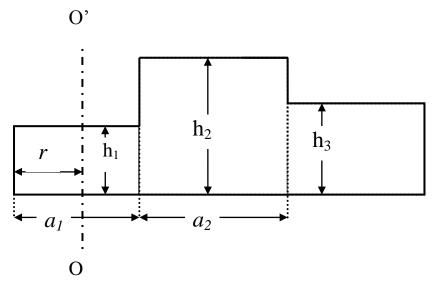


Таблица 1

Физ.					Вари	анты				1
велич.	0	1	2	3	4	5	6	7	8	9
a_1	0,4	0,6	0,8	1,0	0,2	0,4	0,6	0,8	1,0	0,2
h_1	0,3	0,5	0,4	0,2	0,3	0,5	0,4	0,6	0,8	0,6
h_2	0,5	0,2	0,6	0,3	0,5	0,2	0,7	0,2	0,4	0,3
x_2	0,5	0,4	0,9	1,2	0,6	0,0	0,8	1,4	2,0	1,0
x_3	0,8	1,4	1,6	2,0	0,8	1,4	1,6	2,0	1,1	1,7
F_3	2,0	-1,5	0,5	0,8	-2,0	0,7	1,5	0,5	2,0	-0,8

Таблица 2

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
a_2	0,6	0,8	0,4	0,2	0,4	0,6	0,4	0,2	0,4	0,6
h_3	0,7	0,5	0,4	0,2	0,3	0,5	0,4	0,6	0,8	0,6
x_1	0,5	0,2	0,6	0,3	0,5	0,0	0,1	0,7	0,4	0,3
r	0,2	0,4	1,6	1,2	0,6	0,0	0,8	1,4	2,0	1,0
F_{I}	2,0	-1,5	0,5	0,8	-1,0	1,5	-2,0	0,7	1,5	0,5
F_2	0,5	0,8	-1,0	1,5	-2,0	0,7	1,5	0,5	2,0	-1,5

ЗАДАЧИ К ТЕМЕ 9

9.1. Вал, вращавшийся с угловой скоростью ω_{0} , $o\delta/c$, тормозится приложенной к его поверхности касательной силой F. За время t скорость вала уменьшилась до ω_{1} , $o\delta/c$, и он сделал N оборотов. Масса вала m, радиус R.

Физ.				<i>)</i> 1 / 1	Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
ω_0	20	-	40	50	60	30	50	80	-	40
ω_l	0	10	20	30	20	-	20	60	20	20
F	-	8	12	15	10	20	4	-	10	14
m	15	12	-	20	10	4	12	6	30	20
N	-	200	-	-	-	400	-	-	300	-
R	0,2	0,4	0,3	-	0,5	0,4	0,3	0,2	0,3	0,1
t	8	-	10	6	-	-	-	10	-	20
Найти	F	ω_0	m	R	t	ω_l	N	F	ω_0	N

9.2. С наклонной плоскости длиной l, высотой h и углом наклона α скатывается тело (шар, диск, обруч) за время t и приобретает скорость V.

					Вари	анты				
Физ.	0	1	2	3	4	5	6	7	8	9
велич.					те.	ло				
	шар	диск	обр.	шар	диск	обр.	шар	диск	обр.	шар
h	6,0	-	ı	-	-	ı	ı	3,0	ı	2,0
l	-	10	8	12	-	15	-	-	20	-
α	-	-	24°	-	30°	6°	15°	9°	-	-
t	-	4	-	-	2	-	-	-	5	4,0
V	-	_	-	3,0	-	-	2,0	-	-	-

найти	V	h	t	α	l	V	h	t	α	l	
-------	---	---	---	---	---	---	---	---	---	---	--

9.3. На вал радиусом R намотан шнур с грузом массой m. Груз падает с высоты h с ускорением a и достигает скорости V. Момент трения в подшипниках вала M_{mp} , натяжение шнура $F_{\scriptscriptstyle H}$. Момент инерции вала I.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
a	-	-	3,0	-	-	-	-	4,0	-	-
M_{mp}	0,3	0,2	0,4	-	0,2	0,3	0,25	0,4	0,2	0,3
I	0,04	0,06	0,08	0,1	0,07	0,05	0,12	-	0,07	0,02
R	0,1	0,12	0,1	0,2	0,15	-	0,2	0,1	0,14	0,1
m	2,0	1,5	-	2,5	3,0	1,2	2,0	1,6	2,0	-
$F_{\scriptscriptstyle H}$	-	-	-	10	-	-	-	-	-	12
V	_	_	-	7	-	6	-	-	10	-
h	-	10	-	8	-	12	-	-	-	-
Найти	$F_{\scriptscriptstyle \mathcal{H}}$	V	m	M_{mp}	а	R	$F_{\scriptscriptstyle{\mathcal{H}}}$	Ι	h	m

9.4. Угол поворота диска массой m, радиусом R и моментом инерции I описывается уравнением: $\varphi = t + Bt^2 + Ct^3$. M - момент сил, действующий на маховик в момент времени t.

Физ.		Варианты										
велич.	0	1	2	3	4	5	6	7	8	9		
В	ı	0,8	0,5	0,7	0,6	1,5	2,0	ı	3,0	0,6		
C	0,3	0,2	0,2	0,1	0,15	ı	-0,2	0,2	-0,3	0,2		
M	6,0	4,0	3,0	2,0	5,0	4,5	1,2	9,0	-	4,0		
I	3,0	2,0	-	4,0	_	5,0	-	-	-	2,5		
R	-	ı	0,7	-	0,6	ı	-	0,5	0,8	-		
m	-	-	-	2,0	10,0	ı	_	12	10	-		
t	5	4	7	10	_	3	6	15	8	-		

9.5. Маховик вращался с угловой скоростью ω_I . Под действием постоянного момента сил M он, сделав N оборотов, приобрел угловую скорость ω_2 . Момент инерции маховика I, начальная кинетическая энергия - E_I , конечная – E_2 .

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
N	25	20	-	60	50	30	50	80	-	60
ω_l	-	8	12	-	-	10	-	ı	5	14
M	2,0	-	1,5	3,0	0,75	2,0	0,5	-	3,0	1,2
I	-	8	6	10	8	5	12	4	16	4
ω_2	10	-	-	14	-	-	-	20	-	-
E_{I}	200	-	-	-	-	-	200	300	-	-
E_2	-	400	800	-	500	-	-	-	800	-
Найти	Ι	М	N	E_1	ω_l	E_2	ω_2	M	N	E_2

9.6. На горизонтальный вал с моментом инерции I радиусом R намотан шнур. К концу шнура привязан груз массой m. Угловое ускорение вала \mathcal{E} . Ускорение груза a. В подшипниках вала действует момент сил трения M_{mp} .

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
a	-	-	-	-	5	2,5	-	-	2,8	-
\mathcal{E}	-	-	15	10	_	-	-	-	-	5
M_{mp}	0,5	0,3	0,2	1,5	0,1	0,2	1,2	2	0,6	0,4
I	0,5	2,0	1,5	3,0	-	0,8	0,6	1,5	2,5	-
R	0,3	0,5	0,2	-	0,2	-	0,3	0,4	0,5	0,2
m	2	3	-	5	2,5	4	3	5	-	2,5
Найти	\mathcal{E}	а	m	R	I	R	\mathcal{E}	а	m	Ι

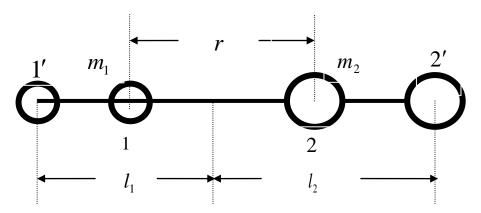
9.7. Стержень массой m_1 и длиной l вращается вокруг горизонтальной оси, проходящей на расстоянии r от конца стержня. На другом конце стержня закреплен маленький шарик массой m_2 . При угле отклонения стержня от положения равновесия α его угловая скорость α , а угловое ускорение ε . При прохождении положения равновесия угловая скорость α 0.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m_1	2,0	3,0	5,0	4,0	3,0	5,0	8,0	-	6,0	4,0
m_2	0,5	1,0	2,0	1,0	0,0	0,5	ı	2,0	0,5	-
l	2,0	4,0	2,5	3,0	1,5	-	3,0	4,0	2,0	4,0
r	0,5	1,0	1,0	0,7	-	0,5· <i>l</i>	1,2	2,0	0,0	1,6
α	90°	120°	30°	-	150°	45°	120°	60°	150°	135°
ω	-	0,5	-	-	0,0	-	1,5	-	-	-
ω_0	-	-	1,0	-	1,5	-	2,5	-	-	-
\mathcal{E}	-	-	-	3,5	-	1,6	-	2,0	-	2,5
Найти	\mathcal{E}	ω_0	ω	α	r	l	m_2	m_1	\mathcal{E}	m_2

9.8. По плоскости с углом наклона α катится без скольжения колесо массой m, радиусом R и с моментом инерции I. К оси колеса приложена сила F, параллельная плоскости. Найдите ускорение центра колеса и силу трения между колесом и плоскостью.

Физ.		Варианты										
велич.	0	1	2	3	4	5	6	7	8	9		
α	9°	12°	18°	6°	9°	6°	12°	6°	15°	12°		
m	2,0	4,0	6,0	3,0	8	2,0	5,0	3,0	4,0	6,0		
I	0,12	0,1	0,05	0,12	0,4	0,2	0,15	0,02	0,3	0,2		
\overline{F}	5	4	12	5	8	1,5	6	2	4	8		
R	0,3	0,2	0,1	0,2	0,3	0,4	0,2	0,1	0,3	0,2		

9.9. Маховик, насаженный на вал, приводится во вращение постоянной касательной силой F, приложенной к поверхности вала. Момент инерции маховика с валом I. Через время t маховик вращается с угловой скоростью ω . Радиус вала r.


Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
ω	5	24	12	-	20	30	20	12	-	20
I	-	2,0	3,0	2,5	4,0	-	2,5	2,0	5,0	8,0
\overline{F}	20	40	60	30	-	50	30	50	25	-
r	0,1	-	0,05	0,3	0,12	0,2	-	0,1	0,14	0,08
t	5	8	-	6	10	8	6	-	20	15
Найти	Ι	r	t	ω	F	Ι	r	t	ω	F

9.10. На барабан с радиусом R и моментом инерции I намотан шнур, к концу которого привязан груз массой m. В подшипниках барабана действует момент сил трения M_{mp} . Сила натяжения шнура F_{H} . Угловое ускорение барабана - \mathcal{E} , ускорение груза - a.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
a	2,0	-	-	1,2	-	-	-	3,0	-	-
${\cal E}$	-	-	4,0	-	-	-	-	-	5,0	-
M_{mp}	8	4	10	-	8	6	10	10	-	-
I	10	-	8	12	6	12	8	-	7	15
R	-	0,4	0,5	0,6	0,3	0,45	0,25	0,5	0,4	0,5
m	12	8	-	10	10	8	-	12	6	20
$F_{\scriptscriptstyle H}$	1	60	1	-	1	-	80	1	-	160
Найти	R,	I,	М,	$M_{mp,}$	a,	ε,	a,	I,	$M_{mp,}$	a,
	$F_{\scriptscriptstyle H}$	${\cal E}$	$F_{\scriptscriptstyle \mathcal{H}}$	$F_{\scriptscriptstyle \mathcal{H}}$	$F_{\scriptscriptstyle{\mathcal{H}}}$	$F_{\scriptscriptstyle{\mathcal{H}}}$	m	$F_{\scriptscriptstyle{\mathcal{H}}}$	$F_{\scriptscriptstyle \mathcal{H}}$	M_{mp}

ЗАДАЧИ К ТЕМЕ 10

10.1. Два шара массами m_1 и m_2 насажены на горизонтальный стержень массой m_3 , по которому они могут скользить. Шары соединены нитью длиною r и расположены симметрично относительно оси вращения в положениях 1,2. Ось проходит на расстояниях l_1 и l_2 от концов стержня (см. рис.). Стержень вращается относительно вертикальной оси с угловой скоростью ω_l , затем нить пережигают, шары разлетаются к концам стержня в положения 1', 2', и угловая скорость становится ω_2 . Шары считать материальными точками.

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m_1	6,0	5,0	4,0	3,0	4,0	2,0	3,0	5,0	3,0	4,0
m_2	6,0	8,0	8,0	6,0	6,0	8,0	6,0	5,0	5,0	5,0
r	0,2	0,3	0,1	0,2	0,2	0,3	0,1	-	0,4	0,2
l_1	0,7	0,4	0,3	0,6	0,7	0,6	0,6	0,4	0,8	0,5
l_2	0,7	1,0	0,9	0,6	0,5	0,9	0,8	0,8	0,8	0,9
ω_l	3	4	-	-	3	4	-	2	2	5
ω_2	-	-	6	8	6	-	5	4	-	-
m_3	1,4	0,7	1,2	1,0	_	0,5	2,8	0,3	0,7	2,8
Найти	ω_2	ω_2	ω_l	ω_l	m_3	ω_2	ω_l	r	ω_2	ω_2

10.2. На горизонтальной оси закреплено тело с моментом инерции І. В тело на расстоянии r от оси попадает и застревает в нем пуля массой m, летящая со скоростью V горизонтально. Угловая скорость вращения тела после удара пули составляет ω .

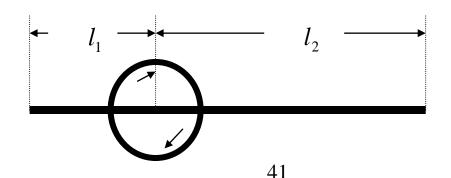
Физ.		Варианты									
велич.	0	1	2	3	4	5	6	7	8	9	
т, г	15	20	-	12	14	10	25	-	15	20	
I	-	12	10	8	14	-	16	12	10	8	
r	2,0	-	1,5	1,2	1,6	1,0	-	2,0	1,8	1,4	
ω	0,5	1,0	0,6	0,8	-	1,2	0,8	0,6	1,0	-	
V	300	500	400	-	600	400	200	300	-	500	
Найти	I	r	m	V	ω	Ι	r	m	V	ω	

10.3. На краю платформы, диск массой m_1 и радиусом R, стоит человек массой m_2 . Платформа вращается с угловой скоростью ω_1 . Когда человек переходит ближе, на расстояние r от центра, она начинает вращаться с угловой скоростью ω_2 . Момент инерции платформы І. Человека можно принять за материальную точку. Угловые скорости даны в o6/мин.

Физ.		Варианты									
велич.	0	1	2	3	4	5	6	7	8	9	
m_1	-	200	-	100	-	150	-	-	120	-	
m_2	60	50	70	80	-	60	70	80	60	70	
I	-	-	30	-	250	-	-	200	-	250	
r	0,5	1,0	0	-	1,5	0,7	1,2	0,5	0	-	
R	2,0	2,5	1,5	3,0	3,0	-	2,0	1,5	2,0	2,5	
ω_l	6	-	4	5	4	5	8	-	8	6	
ω_2	10	12	1	8	8	10	12	10	_	10	
Найти	Ι	ω_l	ω_2	r	m_2	R	m_1	ω_l	ω_2	r	

10.4. Стержень длиной l и массой m_1 закреплен на горизонтальной оси, проходящей на расстоянии a от верхнего конца. Пуля массой m_2 , летящая горизонтально со скоростью V, попадает в него на расстоянии r ниже оси и застревает. В результате этого стержень отклоняется на угол φ .

Физ.					Bap	рианты	Ы			
велич.	0	1	2	3	4	5	6	7	8	9
m_1	25	24	30	-	24	15	16	50	18	30
<i>m</i> ₂ , <i>2</i>	20	15	-	20	10	12	15	20	12	-
V	200	-	250	400	300	-	300	-	150	300
l	2,0	2,0	2,5	3,0	2,5	3,0	-	2,4	2,0	2,2
r	1,2	1,0	1,5	2,0	1,5	1,5	1,0	1,0	1,2	0,8
a	0,4	0	0,5	1,0	0,5	1,0	0	0,4	0	0,2
φ	-	12°	18°	24°	_	6°	15°	6°	-	12°
Найти	φ	V	m_2	m_1	φ	V	l	V	φ	m_2


10.5. Доска закреплена на вертикальной оси. Тело массой m движется перпендикулярно доске со скоростью V_1 и ударяется об нее упруго на расстоянии r. Скорость тела после удара V_2 . Момент инерции доски I, ее угловая скорость после удара ω .

Физ.					Вари	анты				
велич.	0	1	2	3	4	5	6	7	8	9
m	2,0	0,7	1,2	0,8	3,0	-	0,6	0,8	-	2,0
I	-	2,0	2,0	-	1,2	3,0	1,5	-	1,6	2,5
r	0,8	1,4	1,5	2,0	-	1,7	0,8	1,5	1,5	1,4
V_1	5,0	4,0	-	6,0	5,0	3,0	4,0	4,0	-	-
V_2	-2,0	-	-	-3,0	1,0	-2,0	-	-	2,0	2,0
ω	-	-	2,0	-	-	-	-	1,2	2,0	-
Найти	I	ω	V_{I}	Ι	r	m	V_2	I	m	V_{I}

10.6. Платформа, в форме диска радиуса R, вращается с угловой скоростью ω_0 . В ее центре стоит человек и держит в разведенных руках гантели. Масса платформы m. Затем человек опускает руки, уменьшая свой момент инерции от I_1 до I_2 , после чего платформа начинает вращаться со скоростью ω . Угловые скорости даны в $o\delta/muh$.

Физ.		Варианты								
велич.	0	1	2	3	4	5	6	7	8	9
m	40	-	50	25	30	40	-	40	30	60
I_1	6	7	8	5	1	8	6	5	4	6
I_2	1,2	1,5	2,0	1,0	1,4	2,0	1,2	1,0	0,8	1
R	-	0,8	1,2	1,0	0,7	-	0,8	0,9	1,2	1,0
ω_0	10	8	-	12	6	10	12	-	12	8
ω	12	10	10	-	8	14	15	12	-	10
Найти	R	m	ω_0	ω	I_1	R	m	ω_0	ω	I_2

10.7. Человек стоит на скамье Жуковского, вращающейся вокруг вертикальной оси со скоростью ω_{l} , и держит в руках однородный стержень массой m, расположенный перпендикулярно оси вращения, делящей его на отрезки длиной l_{1} и l_{2} . Если человек поворачивает стержень, совмещая его с осью вращения, то вся система начинает вращаться со скоростью ω_{2} . Человек при этом совершает работу A. Моменты инерции скамьи и человека - I_{1} и I_{2} .

Физ.	Варианты											
велич.	0	1	2	3	4	5	6	7	8	9		
m	6	8	12	12	-	6	9	6	12	8		
l_1	1,2	0,5	0,8	0,3	1,0	0	0,8	0,9	1,0	0,6		
l_2	1,0	1,5	1,2	1,7	1,0	1,2	0	1,1	1,0	1,4		
I_1	1,5	2,0	1,2	-	1,0	1,5	2,0	1,5	2,2	-		
I_2	-	1,2	1,6	1,4	1,4	1,2	-	0,9	1,2	1,5		
ω_l	0,5	0,4	0,3	0,4	0,5	-	0,3	-	0,5	0,4		
ω_2	0,8	-	-	0,7	0,8	0,8	0,5	1,2	_	0,8		
Найти	I_2	A	ω_2	I_1	m	ω_l	I_2	A	ω_2	I_1		

10.8. Стержень длиной l и массой m_1 закреплен на оси, проходящей через его середину перпендикулярно стержню. На расстоянии r от оси в стержень попадает пуля массой m_2 , летящая горизонтально, перпендикулярно стержню со скоростью - V, и застревает в нем. В результате стержень начинает вращаться со скоростью ω и приобретает кинетическую энергию E.

Физ.	Варианты											
велич.	0	1	2	3	4	5	6	7	8	9		
m_1	5	4	3	5	4	-	6	5	8	3		
m_2 , ε	20	15	-	20	10	12	15	20	-	10		
V	200	300	250	-	300	400	500	-	400	500		
l	2,0	2,0	2,5	3,0	2,5	3,0	_	2,4	2,0	1,8		
r	1,0	0,8	1,2	1,0	-	1,0	1,2	0,8	1,0	0,6		
ω	-	-	-	1,2	0,8	-	2,0	-	0,8	-		
E	-	-	6	-	-	8	-	6	-	-		
Найти	E	ω	m_2	V	r	m_1	l	V	m_2	E		

10.9. Два диска вращаются вокруг вертикальной оси с угловыми скоростями ω_1 и ω_2 : а) в одном направлении; б) в противоположных направлениях. Моменты инерции дисков I_1 и I_2 . Верхний диск падает на нижний, и они вращаются вместе с угловой скоростью ω . Найти ω и количество выделившегося тепла Q.

Физ.	Варианты									
велич.	0	1	2	3	4	5	6	7	8	9
Вращ.	a	б	a	б	a	б	a	б	a	б
I_1	0,1	0,2	0,3	0,4	0,3	0,2	0,15	0,2	0,3	0,4
I_2	0,3	0,4	0,3	0,2	0,15	0,2	0,3	0,4	0,1	0,2
ω_l	20	12	20	14	30	10	24	30	12	20
ω_2	10	25	30	12	20	10	12	20	14	30

10.10. На краю платформы, которая может свободно вращаться вокруг вертикальной оси, стоит человек. Человек ловит мяч, летящий по касательной к платформе со скоростью V, после чего платформа начинает вращаться со скоростью ω . Масса платформы m_I , её радиус R, момент инерции I. Масса человека m_2 , масса мяча m_3 .

Физ.		Варианты								
велич.	0	1	2	3	4	5	6	7	8	9
m_1	-	-	80	-	80	-	100	-	-	120
m_2	60	50	70	-	60	50	60	70	80	60
m_3	0,3	0,1	0,2	0,2	-	0,25	0,3	0,25	0,15	0,2
I	-	-	-	160	-	200	-	-	120	-
R	2,0	1,4	-	2,0	1,4	1,2	1,5	1,2	-	1,4
ω	0,01	0,02	0,01	0,02	0,01	0,02	-	0,02	0,01	0,02
V	5	12	8	7	8	-	12	15	14	-
Найти	m_1	I	R	m_2	m_3	V	ω	I	R	V

СОДЕРЖАНИЕ

Правила оформления и выполнения задания	3
Тема 1. Прямолинейное движение	4
Тема 2 . Криволинейное движение	5
Тема 3. Ускорение при криволинейном движении	12
Темы 4, 5, 6 Законы динамики	14
Тема 7. Работа переменной силы	28
Темы 8,9,10 Динамика вращательного движения	30

Редактор и корректор Н,П.Новикова Техн. редактор Л.Я.Титова

Темплан 2015 г., поз. 37

Подп. к печати 15.06.15. Формат 60х84/16. Бумага тип. №1. Печать офсетная. Объем 2,75 печ. л.2,75 уч.-изд.л. Тираж 300 экз. Изд. № 37. Цена «С». Заказ

Ризограф Санкт-Петербургского государственного технологического университета растительных полимеров, 198095, СПб., ул. Ивана Черных, 4