## ОПРЕДЕЛЕНИЕ РАБОЧЕЙ ТОЧКИ ПОЛУПРОВОДНИКОВОГО ДИОДА

## Задача для выполнения в классе:

По заданным параметрам, используя уравнение идеального p-n перехода, построить ВАХ и графическим способом определить рабочую точку полупроводникового диода при работе в схеме на рисунке 1.

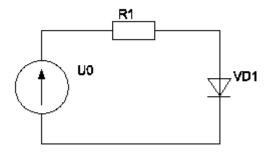



Рисунок 1 – Исследуемая схема

$$I_{p-n} = I_0 \left( e^{\frac{U_D}{\varphi_T}} - 1 \right),$$

где  $I_{p-n}$  — ток диода с идеальным p-n переходом,  $I_0$  — обратный ток диода,  $U_D$  — напряжение на диоде,  $\varphi_T$  — тепловой потенциал p-n перехода.

Тепловой потенциал определяется по формуле:

$$\varphi_T = \frac{kT}{q},$$

где q — заряд электрона (  $1.6 \cdot 10^{-19}$  кл), k — постоянная Больцмана ( $1.38 \cdot 10^{-23}$  Дж/К), T — температура перехода в Кельвинах.

## Для самостоятельного выполнения:

Определить омическое и дифференциальное сопротивление диода в рабочей точке. Определить параметры схемы замещения диода. Решить задачу определения рабочей точки, использую параметры схемы замещения.

## Варианты:

| Вариант | $U_0$ , B | <b>R</b> <sub>1</sub> , кОм | <i>I</i> <sub>0</sub> , A | T, °C |
|---------|-----------|-----------------------------|---------------------------|-------|
| 1       | 1.6       | 1                           | 10 <sup>-11</sup>         | 10    |
| 2       | 2.7       | 5                           | 10 <sup>-10</sup>         | 30    |
| 3       | 4.3       | 2                           | 10 <sup>-9</sup>          | 45    |
| 4       | 3.2       | 6                           | 10 <sup>-11</sup>         | 20    |
| 5       | 1.8       | 3                           | 10 <sup>-10</sup>         | 30    |
| 6       | 2.2       | 1                           | 10 <sup>-9</sup>          | 50    |
| 7       | 2.8       | 5                           | 10 <sup>-11</sup>         | 10    |
| 8       | 3.6       | 2                           | 10 <sup>-10</sup>         | 20    |
| 9       | 4.6       | 6                           | 10 <sup>-9</sup>          | 25    |
| 10      | 2.4       | 3                           | 10 <sup>-11</sup>         | 30    |
| 11      | 1.6       | 1                           | 10 <sup>-10</sup>         | 40    |
| 12      | 2.7       | 5                           | 10 <sup>-9</sup>          | 50    |
| 13      | 4.3       | 2                           | 10 <sup>-11</sup>         | 10    |
| 14      | 3.2       | 6                           | 10 <sup>-10</sup>         | 20    |
| 15      | 1.8       | 3                           | 10 <sup>-9</sup>          | 25    |
| 16      | 2.2       | 1                           | 10 <sup>-11</sup>         | 30    |
| 17      | 2.8       | 5                           | 10 <sup>-10</sup>         | 40    |
| 18      | 3.6       | 2                           | 10 <sup>-9</sup>          | 50    |
| 19      | 4.6       | 6                           | 10 <sup>-11</sup>         | 10    |
| 20      | 2.4       | 3                           | 10 <sup>-10</sup>         | 20    |
| 21      | 1.6       | 1                           | 10 <sup>-9</sup>          | 25    |
| 22      | 2.7       | 5                           | 10 <sup>-11</sup>         | 30    |
| 23      | 4.3       | 2                           | 10 <sup>-10</sup>         | 40    |
| 24      | 3.2       | 6                           | 10 <sup>-9</sup>          | 50    |
| 25      | 1.8       | 3                           | 10 <sup>-11</sup>         | 10    |
| 26      | 2.2       | 1                           | 10 <sup>-10</sup>         | 20    |
| 27      | 2.8       | 5                           | 10 <sup>-9</sup>          | 25    |
| 28      | 3.6       | 2                           | 10 <sup>-11</sup>         | 30    |
| 29      | 4.6       | 6                           | 10 <sup>-10</sup>         | 40    |
| 30      | 2.4       | 3                           | 10 <sup>-9</sup>          | 50    |