Задачи по кинетике.

Раздел1

1. При исследовании кинетики реакции разложения диметилового эфира были получены следующие данные:

Время, с (т)	390	777	1195	3150	∞
Повышение давления, Па (Δp -10 ⁻⁴)	1.28	2,35	3.33	6,23	8,25

Начальное давление диметилового эфира $4,16 \cdot 10^4$ Па. Рассчитайте порядок реакции и константу скорости распада диметилового эфира.

2. При 583 К арсин разлагается по уравнению:

$$2AsH_3 \rightarrow 2As + 3H_2$$

При постоянном объёме и температуре общее давление в реакционном

сосуде изменялось следующим образом:

т, час	0	5,6	6,5	8,0
р•10³, Па	97 , 75	107,41	109,05	111,35

Определить порядок реакции и константу скорости.

3. Реакция щелочного гидролиза этилацетата

 $CH_3COOC_2H_5$ + NaOH \rightarrow CH_3COONa + C_2H_5OH

имеет константу скорости k=5,4 л/(моль • с). Какой должна быть исходная концентрация эфира, чтобы за 5 мин реакция прошла на 90 %? В реакцию вводится стехиометрическая смесь.

- **4.** Реакция разложения иодистого водорода $2HI(r) \rightarrow H_2(r) + I_2(r)$ протекает с константой, скорости 1,85 10^{-4} л/(моль с). Рассчитайте время, за которое прореагирует 99% исходного вещества, если начальная концентрация была равна 1 моль/л
- ${f 5.}$ Смешали одинаковые объёмы двух растворов, содержащих различные вещества A и B в равных концентрациях. В образовавшемся растворе протекает стехиометрическая реакция

$$A + B \rightarrow C$$
.

В течение одного часа с момента смешения растворов 75 % вещества A превращается в вещество C. Какая доля вещества A останется не прореагировавшей к концу второго часа, если:

- а) реакция имеет первый порядок по веществу A и нулевой порядок по веществу B;
- б) реакция имеет первый порядок по веществам А и В;
- в) реакция имеет нулевой порядок по веществам А и В?
- **6.**Скорость реакции первого порядка в начальный момент составляла $3-10^{-5}$ моль/(л с) при концентрации исходного вещества 0,5 моль/л. Определите скорость реакции через 10 мин после начала реакции.

- 7.Определите концентрации водорода и йода через 3 и 10 ч после начала реакции $H_2+I_2\to 2$ HI, считая её необратимой при 327 °C. Предэкспоненциальный множитель $k_0=10^{14},^1~{\rm cm}^3{\rm \bullet monb}^{-1}{\rm \bullet c}^{-1}$, энергия активации $E_0=39~{\rm ккал/моль}$, $[H_2]_0=2~{\rm \bullet}~10^{-2}~{\rm моль/л}$; $[I_2]_0=1~{\rm \bullet}~10^{-2}~{\rm моль/л}$.
- 8. Скорость реакции ацетона с иодом

CH3COCH3 +
$$I_2 \rightarrow CH_3COCH_2I$$
 + HI

прямо пропорциональна концентрации ацетона и не зависит от концентрации иода. За какое время прореагирует 80% ацетона, если при этой же температуре концентрация его уменьшается вдвое за 30 мин?

9.В системе идёт бимолекулярная газофазная реакция

$$A + B \rightarrow C$$
.

Начальный состав смеси $[A]_0/[B]_0=3/1$. Изменение давления в системе при 400 °C дано в таблице:

т, с	0	2	5	10	15	20
Р, мм рт. ст.	600	566	532	498	479	468

Найдите константу скорости реакции k_1 в см $^3/$ с. Напишите уравнения для зависимости давления от времени, если состав исходной смеси будет: а) $[A]_0/[B]_0=1/1$; б) $[A]_0/[B]_0=\frac{1}{2}$

- **10**. Разложение азотного ангидрида $N_2O_5(r) \rightarrow N_2O_4(r) + 1/2O_2(r)$ является реакцией первого порядка. Константы скорости для 293 и 323 К равны соответственно 1,72 10^{-5} и 7,59 $10^{-4}c^{-1}$. Рассчитайте время, за которое подвергнется разложению 99% исходного вещества при указанных температурах, и определите энергию активации этой реакции.
- **11.** Рассчитайте константу скорости необратимой мономолекулярной реакции, используя приведённые ниже экспериментальные данные:

Время, мин	0	1	2,2	3 , 5	6
Концентрация	0	0 /1	ر د	0,22	0 12
реагента, моль/л	0,5	0,41	0,3	0,22	0,12

12. Изучение кинетики окислительно-восстановительной реакции

HIO3 +
$$H_2SO_3 \rightarrow HIO_2 + H_2SO_4$$

показало, что её скорость пропорциональна концентрации каждого из исходных веществ в первой степени. Экспериментально получено, что при смешивании реагентов с равными концентрациями, концентрация каждого из них равнялась 0,25 моль/л через 40 с и 0,2 моль/л через 60 с после начала опыта. Рассчитайте начальную концентрацию исходных веществ и константу скорости.

13. Трет-бутилхлорид гидролизуется в водно-спиртовом растворе с образованием τ рет-бутанола и HC1, реакция имеет первый порядок по τ рет-бутилхлориду. При исследовании кинетики реакции была. получена следующая зависимость электропроводности раствора от времени (единицы измерения электропроводности – условные, известно, что концентрация HC1 достаточно мала):

Время, с	0	280	530	780	1030	1280	20000
Электропроводность	0	0 , 0	0 , 0	0,1	0 , 12	0,14	0,178

Найдите константу скорости реакции.

- **14.** В реакции первого порядка концентрация исходного вещества составляла 1,345 моль/м 3 через 5 мин после начала реакции и 1,209 моль/м через 10 мин после ее начала. Определите константу скорости и начальную концентрацию исходного вещества
- 15. Константа скорости реакции разложения окиси этилена

равна $0,0123~{\rm мин}^{-1}$. Начальная концентрация реагента составляла $0,5~{\rm моль/л}$. Рассчитайте концентрации веществ через $10~{\rm ч}$ после начала реакции и скорость реакции в этот момент.

- **16.** Реакция щелочного гидролиза *трет*-бутилпербензоата (*A*) изучалась в водном растворе *КОН* при 20 °C. Установлено, что реакция имеет первый порядок по *A* и *КОН*, а константа скорости равна $17.2~{\rm M}^{-1}{\rm c}^{-1}$. Найдите время, за которое концентрация *A* уменьшается в два раза, если начальные концентрации *A* и *КОН* равны 1.98 и $3.6~{\rm ммоль/л}$ соответственно
- 17.Термическое разложение ацетона в газовой фазе является реакцией первого порядка

CH3COCH3(
$$\Gamma$$
) \rightarrow C₂H₄(Γ) + CO(Γ) + H₂(Γ)

и протекает при 504°C с константой скорости 4,27 • 10^{-4} с $^{-1}$. Определите, за какое время в реакторе останется 20% первоначального количества исходного вещества. Как изменится давление в реакторе, если в начальный момент продукты реакции отсутствовали?

- **18.** Время полупревращения некоторой реакции первого порядка составляет 10 мин. Рассчитайте время, за которое концентрация исходного вещества уменьшится в пять раз по сравнению с первоначальной.
- 19. Гидролиз трет-бутилйодида (tret-BuI) щёлочью имеет первый порядок по трет-бутилиодиду и щёлочи. Найти константу скорости этой реакции, если для 0,1 М раствора tret-BuI, содержащего двукратный избыток щёлочи, достигается 90 % конверсия tret-BuI за 71 мин.

- **20.** Установлено, что разложение оксида азота (IV) $2NO_2(\Gamma) \rightarrow 2NO(\Gamma) + O_2(\Gamma)$ является реакцией второго порядка. Определите константу скорости, если в начальный момент времени в реакторе находился только оксид азота (IV) с концентрацией 2 моль/л, а через 15 мин концентрация кислорода составляла 0,5 моль/л.
- 21. Константа скорости реакции второго порядка

$$H_2(\Gamma) + I_2(\Gamma) \rightarrow 2HI(\Gamma)$$

при некоторой температуре равна $1,25.\ 10^{-3}\ \pi/$ (моль • c). Определите концентрацию исходных веществ и скорость реакции через 2 мин после ее начала, если в начальный момент смесь состояла из реагентов с одинаковой концентрацией 1,5 моль/ π .

- 22. Кинетика реакции первого порядка $A(r) \rightarrow 2B(r)$ изучалась манометрическим методом. Начальное состояние системы вещество A с давлением 40 кПа. Через 11,5 мин общее давление увеличилось до 60 кПа. Рассчитайте константу скорости реакции
- **23.** Реакция разложения аммиака на вольфрамовой проволоке при 1129 К протекает по уравнению $2NH_3(\Gamma) \rightarrow N_2\Gamma) + 3H_2(\Gamma)$. Кинетика реакции изучалась при измерении повышения общего давления $\Delta p = p_{\rm T} p_0$ с течением времени при постоянном объеме и температуре:

τ, c: 100 200 400 600 800
$$\infty$$

Δp, Πa- 10^{-2} 14,66 29,33 59,70 89,60 117,21

Начальное давление в системе было 2,66 • 10 Па. Определите порядок реакции и рассчитайте константу скорости.

24.В некоторой реакции при изменении начальной концентрации от 1 до 3 моль/л период полупревращения уменьшается с 3 ч до 20 мин. Каков порядок этой реакции и чему равна константа скорости

25.Изучалась кинетика реакции разложения AsH₃(г) с образованием As(т) и H₂(г) при 583 К и при постоянном объеме. Получено следующее изменение общего давления в системе во времени:

26.Определите порядок реакции конверсии пара-водорода в орто-водород при 923 К, пользуясь зависимостью давления (p) от времени полупревращения:

р. 10-5 Па	0,067	0,133	0,267	0,533
$\tau 1_{/2}$, c	648	450	318	222

27. При исследовании кинетики каталитического разложения аммиака

$$2NH_3 = N2 + 3H_2$$

при T=1373 К получены следующие результаты, связывающие время полупревращения и начальное давление аммиака:

<i>Р.</i> кПа	35 , 32	17 , 32	7.73
т с	456	222	102

Определите порядок реакции.

28.В реакции разложения аммиака $2\text{NH}_3\rightarrow\text{N}_2$ + 3H_2 при T= 1373 К получена следующая зависимость парциального давления аммиака от времени:

<i>P</i> , кПа	35,32	23,72	17,68	12,14	7,48	0,52
τ, c	0	300	456	600	720	900

Определите константу скорости реакции.

- **29.**Бимолекулярная реакция $2A \rightarrow B$ протекает за 600 с на 25%. Сколько времени необходимо, чтобы реакция прошла на 50% при той же температуре?
- **30.**Вычислите порядок реакции и константу скорости, если при изменении начальной концентрации с 0,502 моль/л до 1,007 моль/л время полупревращения уменьшается с 51 с до 26 с
- **33.**В реакции хлора с водородом время, необходимое для уменьшения концентрации хлора в 2 раза $(\tau_{1/2})$, равно 26 мин при давлении хлора 2 мм рт. ст. и 15 мин при давлении 6 мм рт. ст. Определите по этим данным порядок реакции по хлору.
- **34.** При температуре 300 К происходит образование *NOC1* из *NO* и $C1_2$. В серии опытов были получены следующие значения начальной скорости образования *NOC1*:

№ опыта	1	2	3	4	5
P_{NO} , Topp	80	150	240	240	240
P _{C12} , торр	150	150	150	50	300
скорость, $cm^{-3}c^{-1}$	2,3	8,1	21	6,9	42

Определите порядок по каждому компоненту и суммарный порядок реакции, полагая, что она протекает в одну стадию. Оцените время полупревращения для опыта \mathbb{N} 2.

35.Восстановление *NO* водородом в реакторе фиксированного объёма приводит к образованию азота и воды. Если исходные газы взяты в равных количествах при общем давлении 0,454 атм, то время полупревращения равно 102 с; если начальное давление было 0,384

атм, то время полупревращения равно 140 с. Определите порядок реакции

36. Рассчитайте наблюдаемый порядок реакции окисления глюкозы кислородом по данным о зависимости начальной скорости реакции от начальной концентрации глюкозы. Концентрация кислорода поддерживается постоянной.

C ₀	, M	0,019	0,035	0,056	0,075	0,11	0,15	0,19	0,37
$\theta_0 \bullet 10^6$,	моль/с	20	21	22	26	29	32	40	44

37. Рассчитайте порядок реакции и константу скорости распада диметилового эфира $(CH_3)_2O \rightarrow CH_4 + H_2 + CO$, основываясь на следующих кинетических данных:

t, c	390	777	1195	3150	8
ΔP •10 ⁻⁴ , Πa	1,28	2,35	3,33	6,23	8 , 25

38.Определите порядок реакции и константу скорости на основании зависимости времени превращения на 25 % от начального давления вещества.

Р _о □ 10 ⁻⁴ , Па	1,06	1,19	1,43	1,64
Т25%, МИН	14	13	12	11

39.Определите по приведённым в таблице данным порядок и константу скорости необратимой реакции изомеризации цианата аммония в мочевину NH_2CONH_2 в водном растворе с начальной концентрацией $[NH_4CNO]_0 = 0$, 382 М. Чему равна концентрация цианата аммония спустя 300 мин после начала реакции?

т, мин	0	20,0	50,0	65,0	150
С(мочевины), М	0	0,117	0,202	0,23	0,295

40. Реакция в смеси двух газов A и B при 230 °C протекает по закону порядка 3/2 для A и нулевого порядка для B. Начальное давление газа A равно 15,7 мм рт. ст. Через час после начала опыта в сосуде осталось 30 % газа A. Определите константу скорости этой реакции

41.Определите порядок и константу скорости реакции окисления NO кислородом, если начальная скорость реакции зависит от состава смеси, как приведено ниже. Температура 50 °C.

θ ₀ • 10 ⁶ , л/(моль•с)	1,2	4,8	2,4
P ₀₂ , мм рт. ст.	10	10	20
P _{NO} , MM pT.CT.	10	20	10

- 42.Определите константу скорости и порядок реакции, если известно, что при изменении начальной концентрации реагента от 1,0 до 0,2 М время полупревращения увеличилось с 2,0 до 50 мин. Определите начальную концентрацию реагента, если измерения его концентрации, проведённые через 10 и 40 мин после начала реакции, показали, что за время между этими измерениями изменение концентрации составило 0,1 М.
- 43.В растворе протекает реакция термического разложения азосоединения

$$R-N=N-R \rightarrow R_2 + N_2$$
.

Через 1 мин после начала реакции выделилось 0,5 см 3 азота, а при полном протекании реакции - 1250 см 3 . Определите величину константы скорости реакции 1-го порядка.

44. Тримолекулярная реакция между веществами A и B протекает в газовой фазе при 50 °C.

P_{A} ,	атм	500	125	250	250
P_{B} ,	атм	10	15	10	20
τ _{1/2} ,	МИН	80	213	160	80

Определите из приведенных данных порядки реакции по компонентам и величину константы скорости в системе СГС.

45. Реакция гидролиза метилацетата при 298 К описывается уравнением

$$CH_3COOCH_3 + NaOH \rightarrow CH_3COONa + CH_3OH.$$

Для этой реакции получены следующие кинетические данные:

Время, мин	3	5	7	10	15	25
С _{NaOH} , ммоль/л	7,40	6,34	5,50	4,64	3,63	2,54

Исходные концентрации щёлочи и эфира одинаковы и равны 10^{-3} моль/л. Определите порядок реакции и константу скорости. Порядок реакции считать целочисленным.

46.В растворе с неизвестной концентрацией реагирующего вещества начальная скорость была равна $2,5 \bullet 10^{-4}$ л./(моль \bullet с). Уменьшение скорости реакции вдвое произошло за 800 с, а в четыре раза — за 1960 с. Определите порядок реакции и величину константы скорости

Раздел 2.

1. При измерении зависимости константы скорости бимолекулярной реакции от температуры были получены следующие результаты:

T, ⁰ C	200	235	270	320
k ₂ , л/(моль•мин)	1,2	1,5	1,9	2,5

Найдите графическим методом энергию активации.

2.Для реакции первого порядка $N_2O_5 \rightarrow 2$ $NO_2 + \frac{1}{2}$ O_2 константа скорости при разных температурах имеет следующие значения:

T, ⁰ K	273	298	308	318	328	338
$(k \bullet 10^5) c^{-1}$	0,0787	3,46	13,5	49,8	150	487

Найдите энергию активации и предэкспоненциальный множитель.

3. Определите энергию активации и предэкспоненциальный множитель константы скорости из следующей зависимости времени полупревращения от температуры:

T, °C		529 , 5	538 , 5	550 , 5	560 , 5	569 , 5
τ _{1/2} ,	С	66,5	44,3	29,6	19,3	14,6

Реакция исследовалась в реакторе постоянного объёма с начальной концентрацией реагента $1.8 \bullet 10^{16} \; \text{см}^{-3}$. Порядок реакции по исходному веществу равен 2.

4.Определите энергию активации и предэкспоненциальный множитель константы скорости реакции димеризации циклопентадиена, если известно, что константа скорости этой реакции изменяется с температурой следующим образом:

Т, К	350	370	390	410	430
$k, M^{-1} \bullet c^{-1}$	5 , 8●10 ⁻⁵	2•10 ⁻⁴	6,2•10 ⁻⁴	2•10 ⁻³	5●10 ⁻³

- **5.** Реакция термического разложения этана является реакцией первого порядка. При 823 К константа скорости реакции равна 2,5 10^5 c⁻¹, а при 903 К 141,5 10^5 c⁻¹. Рассчитайте энергию активации и период полупревращения этой реакции при 873 К.
- 6. Вычислите энергию активации и предэкспоненциальный множитель константы скорости реакции на основании следующих данных:

T, °C	356	427	508
k, c^{-1}	0,0295	1,15	39,6

7.При изучении распада перекисных радикалов в облученном политетрафторэтилене получены следующие значения константы скорости реакции при разных температурах:

-	Τ,	°C	105	125	145	175	205	225
}	k,	C^{-1}	$3,7 \bullet 10^{-4}$	$1,4 \bullet 10^{-3}$	1•10 ⁻²	$2,2 \bullet 10^{-2}$	$4 \bullet 10^{-2}$	2•10 ⁻¹

Определите из этих данных энергию активации и предэкспоненциальный множитель

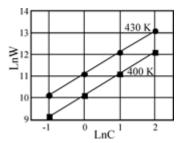

8. Реакция восстановления трёхвалентного железа тиосульфатом

$$2 \text{ Fe}^{3+} + 2 \text{ } S_2 O_3^{2-} \rightarrow 2 \text{ Fe}^{2+} + S_4 O_6^{2-}$$

при исследованных концентрациях реагентов имеет порядок 1,5 по Fe^{3+} и 0,5 — по тиосульфату. Зависимость времени полупревращения от температуры приведена в таблице. Начальные концентрации Fe(III) и тиосульфата одинаковы и равны $7 \bullet 10^{-4}$ М. Определите энергию активации и наблюдаемый предэкспоненциальный множитель.

Т, К	τ _{1/2} , C
293	285
303	95

9.При исследовании полимеризации пропилена была получена следующая зависимость скорости полимеризации от давления мономера. Определите порядок реакции и энергию активации реакции.



10. Найдите графическим методом энергию активации и предэкспоненциальный множитель реакции дегидрирования этилового спирта.

Температура, °С	216	228	247	261
$k \bullet 10^3, c^{-1}$	1,13	1,65	3,22	5 , 82

- 11. Реакция первого порядка имеет энергию активации 231 кДж/моль. При 300 К расходуется 95% исходного вещества за 60 мин. При какой температуре прореагирует 0,1 % вещества в минуту?
- 12.Процесс разложения соли диазония протекает по уравнению $CH_3C_6H_4N_2C1 + H_2O \rightarrow CH_3C_6H_4OH + N_2 + HCl$ и является реакцией первого порядка. Константы скорости реакции равны 15 10^{-4} с⁻¹ и 2,17 10^{-4} с⁻¹ при 298 К и 303 К соответственно. Вычислите константу скорости при 308 К и время, в течение которого распадается 99% соли диазония при этой же температуре.

13. На рисунке приведена зависимость логарифма скорости реакции л./(моль•с) от логарифма концентрации исходного реагента (моль/литр) при двух температурах. Определите порядок реакции, константу скорости реакции при 400 К и энергию активации реакции.

- **14**. Реакция разложения оксида азота (V) является реакцией первого порядка и протекает по уравнению: $N_2O_5 \rightarrow 1/2O_2 + N_2O_4$. Константы скорости реакции равны 0,41 10^{-6} c⁻¹ и 0,96 10^{-4} c⁻¹ при 273 К и 313 К соответственно. Определите время, в течение которого реакция пройдет на 70% при 323 К.
- **15.**Для некоторой реакции первого порядка установлено, что время полупревращения составляет 6 \cdot 10³ с при 323 К и 9 \cdot 10² с при 353 К. Вычислите температурный коэффициент константы скорости реакции
- **16.**При 300 К реакция второго порядка протекает на 90% при начальных концентрациях веществ 0,1 моль/л за 200 мин, а при 320 К за 40 мин. Определите время, за которое реакция пройдет на 99% при 330 К и начальных концентрациях 0,01 моль/л.
- **17**. Константы скорости реакции при 328 К и 298 К составили 1,66 10^{-4} и 1,66 10^{-5} л/(моль с) соответственно. Вычислите скорость этой реакции при 343 К в начальный момент времени, если исходные концентрации веществ были одинаковы и равны 0,01 моль/л.
- **18.**Исследовалась кинетика разложения диэтилперекиси в газовой фазе при 160 °C. Парциальное давление перекиси менялось во времени следующим образом:

t, c	0	48	80	100	140	160
Р, мм рт. ст.	300	271,5	242	228	206	196

Из этих данных определите порядок реакции, оцените константу скорости реакции и энергию активации, если предэкспоненциальный множитель $k_0 = 10^{16} \ {\rm c}^{-1}$. Каков вес перекиси, оставшейся в колбе объёмом 0,2 л через 10 мин после начала опыта?

19. Константы скорости органической кислоты в воде следующие:

T, °K	273	293	313	333
k·10 ⁵ , мин-1	2,47	47,5	576	5480

Определить значение константы скорости при 323К.

20. Определить температуру полупревращения для реакции щелочного гидролиза этилацетата при $60\,^{\circ}$ С и $C_0=0$,5 моль/л, если известна температурная зависимость для константы сеорости:

Т, ⁰К	273	293	298
$k \cdot 10^5$, л·моль ⁻¹ ·мин ⁻¹	1,17	5,08	6,58

- **21.** Разложение некоторого вещества протекает по реакции первого порядка с энергией активации 231 кДж/моль. При 300 К в течвение часа разлагается 95% вещества. При какой температуре скорость разложения составит 0,1% в минуту?
- **21.** Реакция второго порядка при 300 К протекаент на 90% за 200 мин, при 320 К за 40 мин. За какое время реакция пройдёт на 95 % при 350К, если c_0 =0,05 моль/л.
- 22. Константы скорости разложения пербората натрия при температурах 303 и 308 К составляют 2,2 10-3 и 4,1 10-3 соответственно. В течение какого вроемсени при температуре 313 К разложится 99% исходного количества?

23. 1111Для некоторой реакции первого порядка была получена зависимость константы скорости от температуры

Температура, °С	0	20	40	60
$k \cdot 10^6, c^{-1}$	2,46	47,5	576	?

Определить энергию активации, коэффициент Вант-Гоффа и значение константы скорости при 60 $^{\rm o}{\rm C}$.

24. Метан взаимодействует с водяным паром.

Температура, °С	700	750	800	1000
k·10 ⁴ мин ⁻¹	0,14	0,28	1,4	?

Определить энергию активации предэкспоненциальный множитель и значение константы скорости при 1000 °C.

25. Определить энергию активации некоторой реакции, если известно, что при повышении температуры от 335 до 365 К скорость реакции увеличивается в восемь раз.

26. Определить энергию аккктивации реакции первого порядка по следующим данным:

Температура, °С	20	40	60
$k \cdot 10^4$ мин $^{-1}$	0,54	0,66	?