РАСЧЕТ ПЕРЕХОДНЫХ ПРОЦЕССОВ В RL/RC ЦЕПЯХ ПРИ НАЧАЛЬНОМ ЗАПАСЕ ЭНЕРГИИ В НАКОПИТЕЛЬНОМ ЭЛЕМЕНТЕ.

2.1 Влияние начальных условий на характер протекания переходного процесса

Будем рассматривать цепь с накопительным элементом, который получил запас энергии от активного двухполюсника, и в момент t = 0 подключается к другой части цепи. Используя метод эквивалентного источника такую цепь можно привести к цепи простой структуры (рис.1.1) и рассматривать решение уравнений таких цепей с учетом начального запаса энергии

$$\hat{u}_{C}(t) = 1 - (1 - \hat{u}_{C0})e^{-\hat{t}}; \hat{u}_{C0} = \hat{u}_{C}(0); \hat{i}_{C} = (1 - \hat{u}_{C0})e^{-\hat{t}}$$
(2.1)

$$\widehat{u}_{C} = u_{C} / E_{nl} , \ \widehat{t} = t / \tau , \ \tau = CR_{i} , \ \widehat{i}_{C} = i_{C} / I_{sc}
i_{L}(t) = 1 - (1 - \widehat{i}_{L0})e^{-\widehat{t}} ; \ \widehat{i}_{L0} = \widehat{i}_{L}(0) ;
\widehat{u}_{L} = (1 - \widehat{i}_{L0})e^{-\widehat{t}}$$
(2.2)

$$\hat{u}_L = u_L / E_{nl}, \quad \hat{i}_L = i_L / I_{sc}, \quad I_{sc} = E_{nl} / R_i, \quad \hat{t} = t / \tau, \quad \tau = L / R_i$$

где E_{nl}, I_{sc}, R_i – напряжение XX, ток K3 и внутреннее сопротивление эквивалентного источника.

Скорость запасания энергии в накопительных элементах определяется формулами

$$\hat{p}_{C}(t) = (1 - \hat{u}_{C0})[e^{-\hat{t}} - (1 - \hat{u}_{C0})e^{-2\hat{t}}], \hat{p}_{C} = p_{C}/P_{sc},$$

$$P_{sc} = E_{nl}^{2}/R_{i}$$
(2.3)

$$\hat{p}_{L}(t) = (1 - \hat{i}_{L})[e^{-\hat{t}} - (1 - \hat{i}_{L})e^{-2\hat{t}}], \ \hat{p}_{L} = p_{L}/P_{sc}, P_{sc} = I_{sc}^{2}R_{i}$$
(2.4)

Форма реакций и координаты экстремума t_e, p_e функций $p_C(t), p_L(t)$ зависят от начальных условий

$$t_{eRC} = \tau_{RC} \ln[2(1 - u_{C0}/E_{nl})], \ p_{Ce} = P_{sc}/4; t_{eRL} = \tau_{RL} \ln[2(1 - i_{L0}/I_{sc})] \qquad p_{Le} = P_{sc}/4$$
(2.5)

Рассмотрим влияние начальных условий на характер переходного процесса на примере цепи с емкостным накопителем. Кривые напряжения, тока, мощности и запасаемой энергии при нулевых начальных условиях рассмотрены в разделе 1 и показаны на рис. 1.3.

На рис. 2.1 показаны кривые переходного процесса при отрицательном значении начального напряжения $u_{C0} = -0.5E_{nl}$.

Рис.2.1 Осциллограммы напряжения и тока емкости – а), мощности – б) и запасаемой энергии – в) при начальном значении напряжения $\hat{u}_0 = -0.5$

На интервале времени $0 \le t \le t_1$ мощность отрицательна, и емкость работает в режиме генератора. В момент времени $t = t_1$ происходит смена полярности напряжения

$$t_1 = \ln(1 - u_{C0}), \quad u_{C0} \prec 0$$

Далее емкость начинает работать в режиме накопления энергии. Скачок тока в начальный момент времени превышает бросок тока при нулевых начальных условиях на 50%

$$i_C(0) = \frac{E_{nl} - u_{C0}}{R_i} = \frac{1.5E_{nl}}{R_i}$$

Максимальная скорость запасания энергии в рассматриваемом случае имеет место в момент

$$t_e = \tau \ln \left[2 \left(1 - \hat{u}_{C0} \right) \right] = 1.1 \tau$$

На рисунке 2.2 показаны кривые переходного процесса при положительной полярности начального напряжения $\hat{u}_0 = 0.4$. Из графиков видно, что скачок тока уменьшился в 2.5 раза и составляет 60% от броска тока в цепи с нулевыми начальными условиями, запасаемая энергия монотонно возрастает в отличие от случая $u_{C0} = -0.5E_{nl}$ (рис.2.1-в).

Рис.2.2 Осциллограммы напряжения и тока – а) мощности – б) и запасаемой энергии – в) при начальном значении напряжения емкости $\hat{u}_0 = 0.4$.

2.2 Перенапряжения в цепях при отключении катушки индуктивности

Если при отключении источника в момент t = 0 индуктивность не имеет параллельных ветвей для замыкания тока i_{L0} и выделения на резисторе запасенной в индуктивности энергии, то коммутация цепи сопровождается перенапряжениями на индуктивности и контактах выключателя. Модель такой цепи должна учитывать межвитковую емкость катушки индуктивности и нелинейную вольтамперную характеристику U = f(I) газоразрядного промежутка размыкаемых контактов. В зависимости от мощности цепи размыкание сопровождается образованием искры или дуги.

Для оценки перенапряжений рассмотрим цепь (рис.2.3), в которой параллельно контактам идеального выключателя включен резистор R_2 .

В исходном состоянии в цепи протекает установившейся ток, который определяет накопленную в индуктивности энергию W_{L0}

$$i_L(0_-) = I_{L0} = E/R$$
, $R = R_1 + R_L$, $W_{L0} = LI_{L0}^2/2$

Переходной процесс после размыкания ключа описывается выражением

$$i_{L}(t) = I_{Ls} - (I_{Ls} - i_{L0}) \cdot e^{-t/\tau} , \tau = L/(R_{1} + R_{2} + R_{L}) ,$$

$$I_{Ls} = E/(R_{1} + R_{2} + R_{L})$$

$$u_{L}(t) = L \frac{di_{L}}{dt} = -E \cdot \frac{R_{2}}{R_{1} + R_{L}} \cdot e^{-t/\tau}$$
(2.6)
(2.7)

где τ - время релаксации, I_s – установившееся значение тока, $I_s \prec i_0$.

Перенапряжения на катушке индуктивности $u_{RL}(0_+)$ и контактах выключателя $u_{sw}(0_+)$ определяются по расчетной схеме для момента t = 0 +, показанной на рис.2.3-б.

$$u_{RL}(0_{+}) = i_{L0}R_{L} - E \cdot \frac{R_{2}}{R_{1} + R_{L}}, u_{sw}(0_{+}) = i_{L0}R_{2}$$
(2.8)

При параметрах цепи E = 50, $R_L = 2$, $R_1 = 3$, $R_2 = 45$, L = 0.15 имеем: $i_0 = 10$, $\tau = 0.003$, $I_s = 1$. Напряжения на индуктивности и контактах выключателя в момент времени $t = 0_+$ в 9 раз превышают напряжение источника: $u_L(0_+) = -450$, $u_{sw}(0_+) = 450$. Графики тока и напряжений для указанных параметров цепи показаны на рис.2.4.

Увеличение сопротивления *R*₂ приводит к росту кратности перенапряжений на катушке индуктивности и контактах выключателя.

2.3. Расчет переходных процессов. Задание.

1) Восстановить схему цепи в соответствии с данными таблицы 2.1.

- 2) Определить независимые начальные условия.
- 3) Найти напряжение/ток накопительных элементов и реакцию цепи, указанную в таблице вариантов
- 4) Определить мощность и энергию накопительного элемента
- 5) Построить графики найденных величин. Определить время переходного процесса. Таблица 2.1.

№ва р.	1	2	3	4	5	6	7	8	Найти
1	1-6 U ₁ =24	1-2 R ₂ =2	2-4 R ₃ =2	2-3 L ₄ =3	3-5 R ₅ =2	6-5 U ₆ =9	4-6 $SW_7,$ $0\rightarrow 1$	-	u ₃ (t)
2	1-4 I ₁ =8	1-4 R ₂ =2	1-3 R ₃ =3	2-4 R ₄ =2	1-2 R ₅ =4	1-2 L ₆ =6	3-4 $SW_7,$ $1\rightarrow 0$	-	u ₄ (t)
3	1-6 U ₁ =10	1-2 C ₂ =3	2-3 R ₃ =2	3-5 R ₄ =4	3-4 R ₅ =4	4-6 U ₆ =4	5-6 SW_7 , $0\rightarrow 1$	-	i4(t)
4	1-5 U ₁ =9	1-2 R ₂ =3	4-5 R ₃ =1	2-4 R ₄ =1	2-3 R ₅ =1	3-4 L ₆ =1,5	1-2 SW_7 , $0\rightarrow 1$	-	i ₃ (t)
5	1-5 U ₁ =24	1-2 R ₂ =4	2-3 R ₃ =3	2-4 R ₄ =6	3-4 L ₅ =3	4-5 R ₆ =6	1-2 SW_7 , $0\rightarrow 1$	-	u ₄ (t)
6	4-1 I ₁ =6	1-4 R ₂ =4	1-4 C ₃ =3	1-2 R ₄ =2	2-3 U ₅ =12	3-4 R ₆ =2	1-2 SW_7 , $0\rightarrow 1$	-	i ₆ (t)
7	1-4 U ₁ =6	2-3 R ₂ =2	2-3 L ₃ =0,5	1-2 R ₄ =1	3-4 I ₅ =6	3-4 R ₆ =1	1-2 SW_7 , $1\rightarrow 0$	-	i ₁ (t)
8	5-1 I ₁ =24	1-5 R ₂ =2	1-2 R ₃ =2	2-3 R ₄ =2	3-4 R ₅ =2	2-5 C ₆ = 0,125	4-5 L ₇ =1	$3-5 \\ SW_8, \\ 0 \rightarrow 1$	i ₃ (t)
9	2-1 I ₁ =18	1-4 R ₂ =2	1-3 R ₃ =2	4-2 L ₄ =1	3-2 U ₅ =12	2-5 R ₆ =2	$1-5 \\ SW_7, \\ 0 \rightarrow 1$	-	i ₃ (t)
10	1-5 U ₁ =24	1-2 R ₂ =2	2-5 R ₃ =2	3-5 R ₄ =4	4-5 R ₅ =4	2-3 L ₆ =1	4-5 C ₇ = 0,5	$3-4 \\ SW_8, \\ 0 \rightarrow 1$	u ₃ (t)
11	1-4 U ₁ =9	1-2 R ₂ =1	2-4 R ₃ =1	1-3 R ₄ =1	3-4 C ₅ =0,5	$ \begin{array}{c} \overline{2-3}\\ SW_6,\\ 0\rightarrow 1 \end{array} $	-	-	u ₂ (t)
12	4-1 I ₁ =3	1-2 R ₂ =2	1-3 R ₃ =2	2-4 R ₄ =2	3-4 C ₅ =1/3	$2-3 \\ SW_6, \\ 1 \rightarrow 0$	-	-	i ₂ (t)

Таблица вариантов

13	1-4 U ₁ =8	1-2 R ₃ =2	1-3 R ₃ =2	2-4 R ₄ =1	3-4 L ₅ =4	$\begin{array}{c} 2-3\\ SW_6,\\ 0\rightarrow 1 \end{array}$	-	-	i ₃ (t)
14	4-1 L ₁ =12	1-2 R ₂ =3	1-3 R ₃ =1	2-4 R ₄ =1	3-4 R ₅ =3	3-4 C ₆ =0,8	2-3 $SW_7,$ $1\rightarrow 0$	-	i ₂ (t)
15	4-1 I ₁ =15	1-2 R ₂ =2	2-4 R ₃ =2	1-3 R ₄ =2	2-5 R ₅ =2	3-4 C ₆ =3	3-5 $SW_7,$ $0\rightarrow 1$	-	i ₄ (t)
16	1-4 U ₁ =36	1-2 R ₂ =2	2-5 R ₃ =2	2-3 R ₄ =1	3-4 R ₅ =1	3-4 L ₆ =0,2 5	$\begin{array}{c} 4-5\\ SW_7,\\ 1\rightarrow 0 \end{array}$	-	i ₅ (t)
17	4-1 I ₁ =15	1-2 R ₂ =2	2-4 R ₃ =3	1-3 R ₄ =3	2-5 R ₅ =3	3-4 L ₆ =3	$\begin{array}{c} 3-5\\ SW_7,\\ 1\rightarrow 0 \end{array}$	-	u ₄ (t)
18	1-5 U ₁ =16	1-2 R ₂ =4	2-5 R ₃ =4	2-3 R ₄ =2	4-5 R ₅ =4	3-5 C ₆ =1	$\begin{array}{c} 3-4\\ SW_7,\\ 0\rightarrow 1 \end{array}$	-	u ₃ (t)
19	1-4 U ₁ =12	1-2 R ₂ =2	2-4 R ₃ =2	2-4 C ₄ =3	4-3 I ₅ =6	3-4 R ₆ =2	2-3 SW_7 , $0\rightarrow 1$	-	i ₆ (t)
20	1-5 U ₁ =12	1-2 R ₂ =4	2-3 L ₃ =3	4-3 R ₄ =2	4-3 I ₅ =6	$\begin{array}{c} 3-4\\ SW_6,\\ 1\rightarrow 0 \end{array}$	4-5 R ₈ =2	-	i ₄ (t)
21	1-4 U ₁ =10	1-2 R ₂ =2	2-4 R ₃ =2	2-3 L ₄ =4	3-4 R ₅ =2	4-3 I ₆ =6	2-3 SW_7 , $0\rightarrow 1$	-	i ₂ (t)
22	4-1 I ₁ =3	1-4 R ₂ =2	1-2 C ₃ =1/3	2-3 R ₄ =4	3-4 U ₅ =5	$ \begin{array}{c} 1-4\\ SW_6,\\ 1\rightarrow 0 \end{array} $	-	-	u ₂ (t)
23	1-5 U ₁ =12	2-3 R ₂ =2	3-5 R ₃ =2	3-4 $I_4=1$ 2	3-4 R ₅ =2	4-5 C ₆ =1/6	1-2 $SW_7,$ $0\rightarrow 1$	-	i ₃ (t)
24	4-1 I ₁ =6	1-4 R ₂ =2	1-2 R ₃ =2	2-4 L ₄ =4	2-3 R ₅ =2	3-4 U ₆ =6	$ \frac{1-4}{SW_7}, $ $ 1\rightarrow 0 $	-	u ₃ (t)

2.4. Пример расчета

Схема цепи, составленная по данным таблицы 2.2, показана на рис.2.5

Таблица 2.2

Параметры цепи

Расчет переходного процесса заключается в определении начального состояния цепи до коммутации при t<0 и вычислении параметров $X_s X_t$, и *p* переходных токов и напряжений, закон изменения которых определяется видом решения дифференциального уравнения первого порядка

$$c(t) = X_s + X_t e^{pt}, (2.9)$$

где X_s – установившееся значение реакции, X_t – начальное значение свободной составляющей реакции, р – корень характеристического уравнения

Расчет производится по схемам замещения цепи для различных интервалов времени t < 0, $t = 0_+$, $t \to \infty$ и схеме цепи для свободных токов.

Независимые начальные условия $u_C(0_-)$, $i_L(0_-)$ определяются по схеме цепи до коммутации (рис. 2.6)

$$u_{C}(0_{-}) = U_{6} \cdot \frac{R_{3}}{R_{3} + R_{4}} = \frac{3}{2}$$

Энергия, запасенная в емкости до размыкания ключа, равна:

$$W_{C}(0_{-}) = \frac{C \cdot u_{C}(0_{-})^{2}}{2} = 3,375.$$

Установившийся режим цепи после размыкания ключа SW₇ рассчитывается по схеме для времени $t \rightarrow \infty$ (рис. 2.7). Напряжение U_{Cs} , I_{2s} вычисляются по методу наложения. Частные реакции находятся с помощью коэффициентов передачи напряжения/тока и закона Ома:

$$U_{Cs} = \frac{R_2 + R_3}{R_2 + R_3 + R_4} \cdot U_6 + I_1 \cdot \frac{R_2}{R_2 + R_3 + R_4} \cdot R_4 = 4.$$
$$I_{2s} = \frac{U_6}{R_2 + R_3 + R_4} + I_1 \cdot \frac{R_3 + R_4}{R_2 + R_3 + R_4} = 5.$$

Для получения характеристического уравнения используется расчетная схема цепи для свободных токов (рис. 2.8), которые изменяются по закону $i_t(t) = I_t e^{pt}$.

Определим эквивалентное сопротивление R_e относительно узлов 2-4, к которым подключена емкость C:

$$R_e = \frac{R_4 \cdot (R_2 + R_3)}{R_2 + R_3 + R_4} = \frac{2}{3}.$$

Из закона Кирхгофа для преобразованной цепи $I_t Z(p) = 0$ и условия $I_t \neq 0$ вытекает характеристическое уравнение:

$$Z(p) = R_e + 1/pC = 0.$$

Корень уравнения и время релаксации цепи равны

$$p = -1/R_e C = -0.5$$
, $\tau = 1/|p| = R_e C = 2$.

Амплитуды свободных составляющих реакций X_t определяются по начальным значениям реакций $x(0_+)$ в момент времени $t = 0_+$:

$$x(0_{+}) = X_{s} + X_{t}; X_{t} = x(0_{+}) - X_{s}.$$

Значение $x(0_+)$ находится по расчетной схеме, показанной на рис.2.9. В этой схеме независимое начальное условие $u_C(0_-) = u_C(0_+) = 1,5$ учтено источником напряжения.

Токи $i_2(0_+)$ и $i_C(0_+)$ найдем по методу наложения:

Для определения амплитуд U_{Ct} , I_{Ct} и I_{2t} используются начальные значения токов $i_2(0_+)$, $i_C(0_+)$ и независимое начальное условие $u_C(0_+)$.

$$U_{Ct} = u_C(0_+) - U_{Cs} = 1,5 - 4 = -2,5,$$

$$I_{Ct} = i_C(0_+) = 3,75 \text{ A},$$

$$I_{2t} = i_2(0_+) - I_{2s} = 3,75 - 5 = -1,25.$$

Запишем зависимость реакций от времени:

$$u_{C}(t) = 4 - 2,5e^{-t/2}, i_{C}(t) = 3,75e^{-t/2}, i_{2}(t) = 5 - 1,25e^{-t/2}.$$
(2.10)

Время переходного процесса по уровню 5% составляет $t_s = 3\tau = 6$, по уровню 1% – $t_{s1} = 5\tau = 10$.

Из графиков реакций (рис. 2.10) видно, что напряжение емкости изменятся непрерывно, токи в момент коммутации изменяются скачком.

Энергия емкости $w_c(t)$ и скорость ее запасания $p_c(t)$ определяются формулами:

$$w_{c}(t) = \frac{C \cdot u_{c}(t)^{2}}{2}, \ p_{c}(t) = u_{c}(t) \cdot i_{c}(t).$$

Запищем выражение для мощности

$$p_{C}(t) = P_{sc} \cdot (1 - \hat{u}_{C0}) \cdot [e^{-t/\tau} - (1 - \hat{u}_{C0}) \cdot e^{-2t/\tau}],$$

$$P_{sc} = U_{nl}^{2} / R_{i}, \ \hat{u}_{C0} = u_{C0} / U_{nl},$$
(2.11)

где P_{sc} – мощность эквивалентного источника.

В рассматриваемом примере величины, входящие в формулу (2.11), принимают следующие значения:

$$u_{c0} = 1,5B$$
, $U_{cs} = 4B$, $\hat{u}_{c0} = 0,375$, $P_{sc} = U_{nl}^2/R_e = 24$

Графики $p_{C}(t)$ и $w_{C}(t)$ показаны на рисунке 2.11.

Зависимость $p_C(t)$ имеет экстремум, координаты которого совпадают со значениями, определенными по формулам (2.5)

 $t_e = \tau \cdot \ln 2 \cdot (1 - \hat{u}_0) = 0,45$, $P(t_e) = P_s / 4 = 6$.