ФЕДЕРАЛЬНОЕ АГЕНСТВО ПО ОБРАЗОВАНИЮ

Государственное автономное образовательное учреждение высшего профессионального

образования

Санкт-Петербургский государственный университет

аэрокосмического приборостроения

СИНТЕЗ СИСТЕМЫ АВТОМАТИЧЕСКОГО УПРАВЛЕНИЯ С ЗАДАННЫМИ ХАРАКТЕРИСТИКАМИ ПЕРЕХОДНОГО ПРОЦЕССА ПОСРЕДСТВОМ МАТLAB/ SIMULINK

Методические указания к выполнению расчетной работы по курсу «Системы автоматического управления ЛА и их СУ»

Санкт-Петербург 2023

Цель работы:

Исследовать модель объекта и его системы автоматического управления (САУ), построить частотные характеристики системы, провести синтез регулятора и получить желаемую передаточную функцию системы, построить графики переходного процесса и зону ограничения для ЛФЧХ.

Исходные данные

Дан объект управления, описываемый передаточной функцией вида:

$$W_{\rm o6}(s) = \frac{10}{s(0.1s+1)} \tag{1}$$

Требуется:

1) определить передаточную функцию регулятора, обеспечивающего заданные требования к САУ:

$$t_{nn.} \leq 1c$$

$$\sigma \leq 40\% \quad M \leq 1.8$$

$$x_3 = 2t, \quad \varepsilon_{ycr} \leq 0.1$$

$$x_3 = 4\sin(0.5t), \quad \varepsilon_{max} \leq 0.1$$
(2)

2) построить частотные характеристики исходной и желаемой передаточной функции, отметив зону ограничения для ЛФЧХ;

3) получить переходные характеристики исходной и желаемой передаточной функции при подаче на вход заданных воздействий;

4) оценить запас устойчивости, быстродействие, величину перерегулирования и статическую точность исследуемой системы при подаче на вход заданных воздействий.

ПРИМЕР РАСЧЕТА В MATLAB/ SIMULINK

В соответствии с заданным математическим описанием объекта регулирования (1) построим его модель в программной среде MATLAB / Simulink. Модель имеет вид, представленный на рис. 1.

Рис. 1. Структурная схема модели исходной системы, построенная в программной среде MATLAB / Simulink

Переходный процесс в такой системе при подаче на её вход константы будет иметь вид, представленный на рис. 2:

Рис. 2. Переходный процесс исходной системы

Как видно из рисунка, переходный процесс устойчив, но сопровождается перерегулированием величиной 16.2%. Время переходного процесса $t_{п.п.} = 1$ с.

Оценим запас устойчивости исходной системы. Для этого воспользуемся графиком µ-кривых, в соответствии с которым запас по амплитуде и по фазе.

Рис. 3. График µ-кривых для оценки запаса исследуемой системы

Из рис. 3 видно, что при заданном показателе колебательности M = 1.8, запас амплитуде приблизительно составляет 7 дБ, а запас по фазе приблизительно составляет 33⁰. Максимальный запас по фазе можно отыскать алгебраически, воспользовавшись выражением:

$$\mu_{\max} = \left(\arccos\frac{1}{\sqrt{C}}\right) \frac{180}{\pi} = \left(\arccos\frac{\sqrt{M^2 - 1}}{M}\right) \frac{180}{\pi} = \left(\arccos\frac{\sqrt{1.8^2 - 1}}{1.8}\right) \frac{180}{\pi} = 33.74^{\circ}$$

Зная показатель колебательности определим минимальную длину участка $h = \frac{\omega_2}{\omega_1}$ с наклоном -20 дБ/дек. Чем больше длина этого участка, тем меньше

показатель колебательности $M = \frac{h+1}{h-1}$. Границы участка определяются амплитудами:

$$U_1 = 20 \lg \frac{M}{M - 1} = 20 \lg \frac{1.8}{1.8 - 1} = 7.04 \text{дB},$$
$$U_2 = 20 \lg \frac{M + 1}{M} = 20 \lg \frac{1.8 + 1}{1.8} = 3.837 \text{дB}$$

Сопрягающие частоты определяются из выражений: $\omega_1 = \omega_c \frac{M}{M-1}$, $\omega_2 = \omega_c \frac{M+1}{M}$, где ω_c – частота среза, которая находится из выражения: $\omega_c = k \frac{\pi}{t_{\text{п.п.}}}$. Коэффициент *k* зависит от величины перерегулирования в

соответствии с графиком, представленным на рис. 4.

Рис. 4. Зависимость коэффициента k от величины перерегулирования σ

В соответствии с этим графиком, при величине $\sigma = 16.2\%$ коэффициент $k \approx$

1.2. В этом случае
$$\omega_c = 1.2 \frac{\pi}{1} \approx 3.77 \text{ рад/с}$$
, а $\omega_1 = 3.77 \frac{1.8}{1.8 - 1} \approx 8.5 \text{ рад/с}$ и $\omega_2 = 3.77 \frac{1.8 + 1}{1.8} = 5.86 \text{ рад/с}$.

ЛАФЧХ исходной системы имеет вид, представленный на рис. 5.

Рис. 5. Логарифмическая амплитудно-фазо-частотная характеристика исследуемой системы

На рис. 5 обозначено:

Wob – передаточная функция объекта управления;

Phase Margin (deg) – запас по фазе, рассчитываемый от точки $\mu = -180^{\circ}$;

Delay Phase (sec) – отставание по фазе, с;

At frequency (rad/sec) – запас по амплитуде;

Closed Loop Stable? Yes – индикатор устойчивости системы.

Из рис. 5 видно, что рассчитанный запас устойчивости близок к числовым значениям, показанным на графике: величина запаса по амплитуде составляет 7.86, а запас по фазе равен $\mu = 90^{\circ} - 51.8^{\circ} = 38.2^{\circ}$. Исходная система является в целом устойчивой. Об этом говорит критерий устойчивости, основанный на логарифмической амплитудно-частотной характеристике (ЛАХ). Абсолютная устойчивость системы достигается тогда, когда ЛАХ её передаточной функции

пересекается с осью нуля децибел раньше (т.е. лежит левее), чем фазо-частотная характеристика (ФЧХ) достигнет значения $\mu = -180^{\circ}$. В данном случае ЛАХ передаточной функции исходной системы достигает нуля децибел в точке $\mu = 128.2^{\circ}$, что значительно левее точки $\mu = -180^{\circ}$.

Перейдём к построению желаемой передаточной функции исследуемой системы. Выражение, определяющее такую передаточную функцию, имеет вид:

$$\left|W_{\mathcal{K}}(j\omega)\right| = \left|W_{\text{per}}(j\omega)W_{\text{of}}(j\omega)\right|.$$
(3)

Здесь $W_{\mathfrak{K}}(j\omega)$ – желаемая передаточная функция, $W_{per}(j\omega)$ – передаточная функция регулятора, $W_{ob}(j\omega)$ – передаточная функция объекта регулирования.

Для определения вида желаемой передаточной функции следует учесть максимально допустимую величину ошибки при ограниченном значении скорости входного воздействия и в случае, когда входное воздействие носит гармонический характер. Рассмотрим оба этих случая.

1) $x_3 = 2t$, $\varepsilon_{yct} \le 0,1$. В этом случае скорость входного воздействия равна • $x_3 = (2t)' = 2$, а величина ошибки определяется из выражения:

$$\delta_{\text{ycr}} = \frac{x_3}{K} = \frac{(2t)'}{K} = \frac{2}{K} \le \varepsilon_{\text{ycr}}, \text{ r.e. } \frac{2}{K} \le 0.1 \implies K \ge 20$$
(4)

где К – добротность желаемой передаточной функции.

Если учесть, что исходная передаточная функция уже имеет коэффициент усиления, равный 10, то, чтобы обеспечить выполнение условия (4), коэффициент усиления регулятора должен быть K_{per} ≥ 2.

В этом случае желаемая ЛАЧХ должна проходить не ниже прямой, вычисляемой из уравнения:

$$20 \lg \frac{x_3}{\omega \varepsilon_{\rm vcr}} = 20 \lg \frac{K}{\omega}$$
(5)

и пересекать ось нуля децибел в точке $\omega = \frac{x_3}{\varepsilon_{\text{уст}}} = \frac{2}{0.1} = 20$ рад/с. В случае

необходимости обеспечения запаса по амплитуде, равного 3дБ, величину К

необходимо выбирать из условия $K = 1.4 \frac{x_3}{\varepsilon_{\text{уст}}} = 1.4 \frac{2}{0.1} = 28 \text{ рад/с}.$

2) $x_3 = 4\sin(0.5t)$, $\varepsilon_{\max} \le 0.1$. В этом случае ЛАЧХ желаемой передаточной функции должна проходить не ниже контрольной точки A_K с координатами: $\omega = \omega_k$, $L(\omega_k) = 20 \lg \frac{x_{\max}}{\varepsilon_{\max}}$. В данном случае $\omega_K = 0.5$ рад/с, x_{\max}

= 4, $\varepsilon_{\max} \leq 0.1$. Таким образом, точка A_K будет иметь координаты: $A_k = \left(\omega_k, 20 \lg \frac{x_{\max}}{\varepsilon_{\max}}\right) = \left(0.5, 20 \lg \frac{4}{0.1}\right) = (0.5 \text{ рад}, 32.04 \text{ рад/c}).$

Построим на совместной диаграмме ЛАФЧХ исходной и желаемой передаточной функции, а также нанесём рассчитанные выше ограничения (см. рис. 6).

На рис. 6 обозначено:

Кривая 1 – ЛАЧХ исходной передаточной функции (1);

Кривая 2 – ЛАЧХ, построенная в соответствии с ограничением № 2 (ограничение максимальной ошибки ε_{max} при гармоническом входном воздействии). Её передаточная функция имеет вид: $W_{orp_3}(s) = \frac{11.7}{s(0.01s+1)}$. Коэффициент усиления $K_{orp_3} = 11.7$ выбран так, чтобы ЛАЧХ желаемой передаточной функции проходила через точку $A_K(0.5 \text{ рад}; 32.04 \text{ рад/с})$ (сама точка на графике не отмечена, т.к. расположена левее 0 дб).

Кривая 3 – ЛАЧХ, построенная в соответствии с ограничением № 1 (ограничение максимальной установившейся ошибки ε_{ycr} при ограниченной скорости входного воздействия). Её передаточная функция имеет вид: $W_{orp_2_1}(s) = \frac{20}{s}$. Кривая 4 – ЛАЧХ, построенная в соответствии с ограничением № 1 и дополнительного запаса по амплитуде, равного 3дБ. Её передаточная функция имеет вид: $W_{\text{orp}_2_2}(s) = 1.4 \cdot \frac{20}{s}$.

Кривая 5 – ЛАЧХ желаемой передаточной функции, имеющей больший запас по амплитуде и по фазе, чем у исходной передаточной функции, и лежащей выше остальных ЛАЧХ в низкочастотной и среднечастотной области. Её передаточная функция имеет вид:

$$\begin{split} W_{\mathcal{K}}(s) &= W_{o6}(s)W_{per}(j\omega) = \frac{10}{s(0.1s+1)} \cdot \frac{3.5(0.1s+1)}{(0.01s+1)} = \frac{35}{s(0.01s+1)}, \\ \text{где } W_{per}(j\omega) &= \frac{3.5(0.1s+1)}{(0.01s+1)}. \end{split}$$

Такой регулятор обеспечивает выполнение условий ограничений по статической точности, заданных в п.п. 1 – 2.

Штриховкой обозначена область, ниже которой не должна опускаться кривая ЛАЧХ желаемой передаточной функции. В противном случай требования по статической точности ε_{ycr} и ε_{max} не будут выполнены, хотя желаемая система будет оставаться устойчивой.

На рис. 7 отмечены запасы устойчивости исходной и желаемой передаточной функции, а также функций-ограничений.

Рис. 6. Сравнение логарифмических амплитудно-фазо-частотных характеристик исходной и желаемой передаточной функции

Рис. 7. Логарифмические амплитудно-фазо-частотныехарактеристики исходной и желаемой передаточной функции, а также функций-ограничений с отмеченными запасами по амплитуде и фазе

Таким образом, желаемая передаточная функция исследуемой системы имеет вид:

$$W_{\rm K}(s) = W_{\rm of}(s)W_{\rm per}(j\omega) = \frac{35}{s(0.01s+1)},\tag{6}$$

где
$$W_{\text{per}}(j\omega) = \frac{3.5(0.1s+1)}{(0.01s+1)}$$
 – передаточная функция регулятора. (7)

Передаточная функция (6) является устойчивой и обладает хорошим запасом устойчивости: по амплитуде $L(\omega) = 33.2$ дБ, и по фазе $\mu = 71.6^{0}$ (если считать от границы $\mu_0 = -180^{0}$).

Структурная схема модели системы с исходной передаточной функцией и регулятором (7) представлена на рис. 8.

Рис. 8. Структурная схема модели системы с исходной передаточной функцией и регулятором (7), построенная в программной среде MATLAB / Simulink

Ниже, на рис. 9 – 11 приведены переходные характеристики исходной и желаемой системы, построенные при входных воздействиях вида:

- 1) $X_{3ag}(t) = 1(t);$
- 2) $X_{3ag}(t) = 2t;$
- 3) $X_{3ag}(t) = 4sin(0.5t)$.

Рис. 9. Переходная характеристика исходной и желаемой системы, построенная при входном воздействии вида $X_{3ad}(t) = 1(t)$

Рис. 10. Переходная характеристика исходной и желаемой системы, построенная при входном воздействии вида $X_{3ad}(t) = 2t$

Рис. 11. Переходная характеристика исходной и желаемой системы, построенная при входном воздействии вида X_{зад}(t) = 4sin(0.5t)

Результаты анализа графиков переходных процессов исходной и желаемой системы можно свести в таблицу 1.

Вид входного	Величина статической ошибки к моменту времени t _{п.п.} = 1 с					
воздействия	ε _{исх} , %	є _{жел} , %				
$X_{3ad}(t) = 1(t)$	0.0	0.0				
$X_{3aд}(t) = 2t$	0.2	0.057				
$X_{3ad}(t) = 4sin(0.5t)$	0.178	0.051				

Таблицы	1	•
---------	---	---

выводы

Из проведённого анализа следует вывод о том, что синтезированная система, переходная характеристика которой описана желаемой передаточной функцией, является апериодически устойчивой, обладает хорошим запасом устойчивости: по амплитуде L(ω) = 33.2 дБ, по фазе μ = 71.6⁰, почти не имеет перерегулирования, переходный процесс проходит гладко без колебаний, обеспечивается высокое быстродействие (порядка 0.13 с при подаче на вход константы) и лучшая статическую точность по сравнению с переходной характеристикой исходной системы (т.е. удовлетворяет требованиям $\varepsilon_{ycr} \leq 0.1$ и $\varepsilon_{max} \leq 0.1$)

ИСХОДНЫЕ ДАННЫЕ ДЛЯ ВЫПОЛНЕНИЯ ЛАБОРАТОРНОЙ РАБОТЫ

Выполните лабораторную работу, в соответствии с номером варианта (смотри таблицу 2)

№ варианта	t _{п.п.} , с	σ, %	М	<i>x</i> ₃	\mathcal{E}_{yct}	<i>x</i> ₃	\mathcal{E}_{\max}
1	≤1	$\leq 40\%$	≤1,9	$x_3 = 2t$	≤ 0,1	$x_3 = 4\sin(0.5t)$	≤ 0,1
2	≤ 0,9	≤35%	≤1,8	$x_3 = 2t$	≤ 0,2	$x_3 = 4\sin(0.5t)$	≤ 0,2
3	≤ 0,8	≤ 30%	≤1,7	$x_3 = 2t$	≤ 0,3	$x_3 = 4\sin(0.5t)$	≤ 0,3
4	≤ 0,7	≤ 25%	≤1,6	$x_3 = 2t$	≤ 0,4	$x_3 = 4\sin(0.5t)$	≤ 0,4
5	≤ 0,6	≤ 20%	≤1,5	$x_3 = 2t$	≤ 0,5	$x_3 = 4\sin(0.5t)$	≤ 0,5
6	≤ 0,5	≤15%	≤1,4	$x_3 = 2t$	≤ 0,6	$x_3 = 4\sin(0.5t)$	≤ 0,6
7	≤ 0,4	≤10%	≤1,3	$x_3 = 2t$	≤ 0,7	$x_3 = 4\sin(0.5t)$	≤ 0,7
8	≤ 0,3	$\leq 40\%$	≤1,2	$x_3 = 2t$	≤ 0,8	$x_3 = 4\sin(0.5t)$	≤ 0,8
9	≤1	≤ 35%	≤1,1	$x_3 = 2t$	≤ 0,9	$x_3 = 4\sin(0.5t)$	≤ 0,9
10	≤ 0,9	≤ 30%	≤1	$x_3 = 2t$	≤ 0,1	$x_3 = 4\sin(0.5t)$	≤ 0,1
11	≤ 0,8	≤ 25%	≤1,9	$x_3 = 2t$	≤ 0,2	$x_3 = 4\sin(0.5t)$	≤ 0,2
12	≤ 0,7	≤ 20%	≤1,8	$x_3 = 2t$	≤ 0,3	$x_3 = 4\sin(0.5t)$	≤ 0,3
13	≤ 0,6	≤15%	≤1,7	$x_3 = 2t$	≤ 0,4	$x_3 = 4\sin(0.5t)$	≤ 0,4
14	≤ 0,5	≤10%	≤1,6	$x_3 = 2t$	≤ 0,5	$x_3 = 4\sin(0.5t)$	≤ 0,5
15	≤ 0,4	$\leq 40\%$	≤1,5	$x_3 = 2t$	≤ 0,6	$x_3 = 4\sin(0.5t)$	≤0,6
16	≤ 0,3	≤ 35%	≤1,4	$x_3 = 2t$	≤ 0,7	$x_3 = 4\sin(0.5t)$	≤ 0,7
17	≤1	≤ 30%	≤1,3	$x_3 = 2t$	≤ 0,8	$x_3 = 4\sin(0.5t)$	≤ 0,8
18	≤ 0,9	≤ 25%	≤1,2	$x_3 = 2t$	≤ 0,9	$x_3 = 4\sin(0.5t)$	≤ 0,9
19	≤ 0,8	≤ 20%	≤1,1	$x_3 = 2t$	≤ 0,1	$x_3 = 4\sin(0.5t)$	≤ 0,1
20	≤ 0,7	≤15%	≤1	$x_3 = 2t$	≤ 0,2	$x_3 = 4\sin(0.5t)$	≤ 0,2
21	≤ 0,6	≤10%	≤1,9	$x_3 = 2t$	≤ 0,3	$x_3 = 4\sin(0.5t)$	≤ 0,3

Таблица 2. Исходные данные для выполнения лабораторной работе

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- Бесекерский В.А. Теория систем автоматического регулирования/
 В.А. Бесекерский, Е.П. Попов М.: Наука, 2003.
- Острославский И.В. Динамика полёта. Устойчивость и управляемость летательных аппаратов/ И.В. Острославский, И.В. Стражева – М.: Машиностроение, 1965.
- 3 Мироновский Л.А. Введение в МАТLAB. Учебное пособие/ Л.А. Мироновский, К.Ю. Петрова – СПб.: ГУАП, 2006.
- 4 А.Н. Синяков, Ф.А. Шаймарданов Системы автоматического управления ЛА и их силовыми установками Москва: «Машиностроение», 1991. 320с.
- 5 В.А. Боднер. Системы управления летательными аппаратами Москва: «Машиностроение», 1973. 503с.