МИНОБРНАУКИ РОССИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «Санкт-Петербургский государственный технологический институт (технический университет)» (СПб ГТИ (ТУ))

Кафедра механики

А.А. Кузьмин

РАСЧЕТ СТЕРЖНЯ ПЕРЕМЕННОГО СЕЧЕНИЯ С ПОМОЩЬЮ ФУНКЦИИ НАПРЯЖЕНИЙ

Учебное пособие

Санкт-Петербург 2019 УДК 621.822

ББК 34.445

Кузьмин, А. А. Расчет стержня переменного сечения с помощью функции напряжений: учебное пособие /А.А. Кузьмин – СПб.: Изд-во СПб ГТИ (ТУ), 2019.- 29 с.

Учебное пособие кратко излагает основы решения задач с использованием функции напряжений, содержание конкретных задач, стоявших перед разработчиками и методы решения этих задач. В пособии содержится пример решения практической задачи.

Учебное пособие написано в соответствии с рабочей программой дисциплины «Основы теории упругости» и предназначено для подготовки бакалавров заочной формы обучения по направлению «Строительство» 08.03.01. Пособие направлено на формирование элементов следующих компетенций в соответствии с ФГОС ВО: ПК-1; ПК-2

Пособие может быть полезно бакалаврам и магистрантам очной формы обучения по направлению подготовки 08.03.01 – «Строительство».

Рис.12, библиогр. 5 назв.

Рецензенты: 1 СПбГАСУ, доцент кафедры механики, канд. техн. наук Полозенко Н.Ю.
2 Хайдаров Г.Г., канд. техн. наук, доцент кафедры инженерного проектирования СПбГТИ (ТУ).

Издание подготовлено в рамках выполнения внутривузовского задания по оказанию образовательных услуг.

Утверждено на заседании учебно-методической комиссии механического факультета СПб ГТИ (ТУ) 2019 года.

Рекомендовано к изданию РИС СПб ГТИ (ТУ)

СОДЕРЖАНИЕ

Введение	4
1 Напряжения	5
2 Деформации	8
3 Функция напряжений	9
4 Пример расчета	18
5 Анализ результатов расчета	22
6 Порядок оформления работы	24
Литература	25
Приложение. Варианты индивидуальных заданий	26

Введение

Основными целями науки о сопротивлении материалов является решение трех задач: проверка выполнения условия прочности, подбор сечения и определение предельной грузоподъемности. При практическом решении этих задач реальный объект заменяется на расчетную схему. Выбор расчетной схемы упрощает объект: сложные в геометрическом плане тела представляются как простые модели, свойства, зависящие от целого ряда факторов, заменяются на несколько констант, действующие нагрузки представляются в упрощенном виде. Расчет сложных объектов требует сложных расчетных схем и сложных аналитических решений. Применение методов теории упругости, теории пластичности, теории ползучести, строительной механики и других составляющих механики твердого тела позволяет решать достаточно сложные задачи. Предлагаемое учебное пособие позволяет выполнить и сопоставить расчет стержня переменного сечения методами теории упругости с использованием функции напряжений и методом сопротивления материалов [1]. Решение данной задачи позволяет оценить возможности теории упругости при расчете сложных объектов.

Прежде, чем приступить к выполнению работы, рекомендуется внимательно прочитать весь текст настоящего учебного пособия, включая правила оформления, список литературы и варианты индивидуальных заданий.

4

1 Напряжения

Рассмотрим тело, находящееся в равновесии. Под действием внешних сил внутри тела между его отдельными частями возникают внутренние усилия. Применим метод сечений и в окрестности точки O выделим бесконечно малый параллелепипед с гранями Δx , Δy , Δz . По граням этого параллелепипеда будут действовать силы ΔF_x ; ΔF_y ; ΔF_z , (рисунок 1). Отношения этих сил к площадям граней будут характеризовать интенсивность внутренних усилий P_x , P_y , P_z .

Рисунок 1- Элементарный параллелепипед

$$P_x = \lim \frac{\Delta F_x}{\Delta A_x}, \qquad P_y = \lim \frac{\Delta F_y}{\Delta A_y} \qquad P_z = \lim \frac{\Delta F_z}{\Delta A_z}$$
(1)

где $\Delta A_x = \Delta z \cdot \Delta y$; $\Delta A_y = \Delta x \cdot \Delta z$; $\Delta A_z = \Delta x \cdot \Delta y -$ площади соответствующих граней;

P_x, *P_y*, *P_z* – полные напряжения, действующие по этим граням.

Каждую из сил ΔF_x ; ΔF_y ; ΔF_z , действующих по граням разложим на составляющие, действующие по нормалям и в плоскостях этих граней ΔF_{xx} ; ΔF_{yy} ; ΔF_{zz} ; ΔF_{xy} ; ΔF_{xz} ; ΔF_{yz} ; ΔF_{zz} ; ΔF_{zz

указывает площадку, перпендикулярно которой располагается грань, а второй – направление действия соответствующей силы, (рисунок 2). Составляющие полных напряжений называются нормальными σ_x , σ_y , σ_z и касательными τ_{xy} , τ_{xz} , τ_{yx} , τ_{zx} , τ_{zy} напряжениями, (рисунок 3).

Рисунок 2- Составляющие сил, действующих на элементарный параллелепипед

Рисунок 3- Составляющие напряжений, действующих на элементарный параллелейпипед

В общем случае значения нормальных и касательных напряжений будут иметь вид:

$$\sigma_{i} = \lim_{\Delta A_{i} \to 0} \frac{\Delta F_{ii}}{\Delta A_{ix}}$$

$$\tau_{ij} = \lim_{\Delta A_{i} \to 0} \frac{\Delta F_{ij}}{\Delta A_{ij}}$$
(2)

где $i = x, y, z; j = x, y, z; i \neq j$.

На рисунке 3 представлены положительные значения нормальных и касательных напряжений. Из рисунка 3 также следует, что девять компонент напряжений σ_x , σ_y , σ_z , τ_{xy} , τ_{xz} , τ_{yx} , τ_{zx} , τ_{zy} полностью описывают напряженное состояние в точке O. Очевидно, что при повороте координатных осей изменится ориентация площадок кубического элемента, а, следовательно, и величины девяти компонентов напряжений. Однако сам по себе объект и действующие на него нагрузки от выбора системы координат не зависят. Результирующая этих девяти компонент характеризует напряженное состояние в точке, называется тензором напряжений и имеет вид:

$$\sigma = \begin{vmatrix} \sigma_{x} & \tau_{xy} & \tau_{xz} \\ \tau_{yx} & \sigma_{y} & \tau_{yz} \\ \tau_{zx} & \tau_{zy} & \sigma_{z} \end{vmatrix}$$
(3)

2 Деформации

Под действием внешних сил произвольная точка A, лежащая внутри рассматриваемого тела переместится в положение A_I , при котором вектор AA_I называют вектором перемещений или просто перемещением. В общем случае перемещение имеет три компоненты: U, V, W. При этом тело считается неподвижным как жесткое целое, а перемещения малыми по сравнению с размерами самого тела.

Рассмотрим простейшую одномерную задачу (рисунок 4).

Рисунок 4-Схема перемещений в одномерной задаче

Под действием внешних нагрузок отрезок AB длиной dx переместится в положение A_1B_1 (рисунок 4). Определим линейную деформацию

$$\varepsilon_{x} = \frac{A_{1}B_{1} - AB}{dx} = \frac{AB_{1} - AA_{1} - AB}{dx} =$$
$$= \frac{dx + u + du - u - dx}{dx} = \frac{du}{dx}$$
(4)

следовательно, линейная деформация относительно удлинения определяется производной от соответствующего перемещения.

3 Функция напряжений

Плоская задача теории упругости может быть реализована в двух случаях [2]. Для протяженных объектов: подпорных стен, длинных толстостенных цилиндров и т.п. поперечные сечения остаются плоскими до и после приложения нагрузки и их напряженно-деформированное состояние идентично.

Рисунок 5-Тонкая пластина

Для тонких пластин (рисунок 5) координатные оси принято располагать в срединной поверхности, а так как боковые поверхности пластин ($z = \pm h/2$) свободны от внешних усилий, считать, что

$$\sigma_z = \tau_{xz} = \tau_{yz} = 0$$

Например, σ_x , σ_y , τ_{xy} считать средними по толщине. Уравнения равновесия в этом случае при отсутствии объемных сил имеют вид:

$$\frac{\partial \sigma_x}{\partial x} + \frac{\partial \tau_{xy}}{\partial y} = 0$$

$$\frac{\partial \tau_{xy}}{\partial y} + \frac{\partial \sigma_y}{\partial y} = 0$$
(5)

Известным способом решения системы дифференциальных уравнений является ее сведение к уравнению более высокого порядка. С этой целью вводят функцию напряжений φ (функция Эри), которая связана с напряжениями следующими соотношениями:

$$\sigma_{x} = \frac{\partial^{2} \varphi}{\partial y^{2}}; \quad \sigma_{y} = \frac{\partial^{2} \varphi}{\partial x^{2}}; \quad \tau_{xy} = -\frac{\partial^{2} \varphi}{\partial x \partial y} \tag{6}$$

Кроме уравнений равновесия должны удовлетворяться граничные условия и уравнения сплошности. Для плоской задачи последнее выглядит как:

$$\frac{\partial^2 \varepsilon_x}{\partial y^2} + \frac{\partial^2 \varepsilon_y}{\partial x^2} = \frac{\partial^2 \gamma_{xy}}{\partial x \partial y}$$
(7)

С учетом закона Гука для плоской задачи деформации выражаются через функцию напряжений с помощью уравнений:

$$\varepsilon_{x} = \frac{1}{E} \left[\sigma_{x} - \mu \left(\sigma_{y} + \sigma_{z} \right) \right] = \frac{1}{E} \left(\frac{\partial^{2} \varphi}{\partial y^{2}} - \mu \frac{\partial^{2} \varphi}{\partial x^{2}} \right)$$

$$\varepsilon_{y} = \frac{1}{E} \left[\sigma_{y} - \mu \left(\sigma_{x} + \sigma_{z} \right) \right] = \frac{1}{E} \left(\frac{\partial^{2} \varphi}{\partial x^{2}} - \mu \frac{\partial^{2} \varphi}{\partial y^{2}} \right)$$

$$\gamma_{xy} = \frac{1}{G} \tau_{xy} = \frac{2(1+\mu)}{E} \tau_{xy} = \frac{2(1+\mu)}{E} \left(-\frac{\partial^{2} \varphi}{\partial x \partial y} \right)$$
(8)

Подставляя (8) в (7) получим:

$$\frac{\partial^{2}}{\partial y^{2}} \left[\frac{1}{E} \left(\frac{\partial^{2} \varphi}{\partial y^{2}} - \mu \frac{\partial^{2} \varphi}{\partial x^{2}} \right) \right] + \frac{\partial^{2}}{\partial x^{2}} \left[\frac{1}{E} \left(\frac{\partial^{2} \varphi}{\partial x^{2}} - \mu \frac{\partial^{2} \varphi}{\partial y^{2}} \right) \right] = \frac{\partial^{2}}{\partial x \partial y} \left[\frac{2(1+\mu)}{E} \tau_{xy} = \frac{2(1+\mu)}{E} \left(-\frac{\partial^{2} \varphi}{\partial x \partial y} \right) \right]$$
(9)

Преобразуя бигармоническое дифференциальное уравнение 4-го порядка (9) получаем уравнение:

$$\frac{\partial^4 \varphi}{\partial x^4} + 2 \frac{\partial^4 \varphi}{\partial x^2 \partial y^2} + \frac{\partial^4 \varphi}{\partial y^4} = 0$$
⁽¹⁰⁾

С практической точки зрения задача теории упругости состоит в поиске функции напряжений φ , которая была бы достаточно точным решением уравнения (10). Такими функциями являются полиномы, коэффициенты которых определяют из граничных условий. Рассмотрим полином II степени.

$$\varphi_2 = \frac{a_2}{2}x^2 + b_2xy + \frac{c_2}{2}y^2 \tag{11}$$

Из уравнений (6) находим:

$$\sigma_{x} = \frac{\partial^{2} \varphi}{\partial y^{2}} = c_{2}; \qquad \sigma_{y} = \frac{\partial^{2} \varphi}{\partial x^{2}} = a_{2}; \qquad -\tau_{xy} = \frac{\partial^{2} \varphi}{\partial x \partial y} = b_{2}$$

Все три компоненты напряжения постоянны, что характеризуется состоянием, изображенным на рисунке 6.

Рисунок 6-Сочетание сдвига и всестороннего растяжения

Рисунок 7- Всестороннее сжатие

Рассмотрим частный случай

$$\varphi_2 = -\frac{a_2}{2}x^2 - \frac{a_2}{2}y^2, \qquad (12)$$

тогда

$$\sigma_x = \sigma_y = -a_2,$$

что соответствует всестороннему сжатию, рисунок 7. Выберем полином 3-ей степени

$$\varphi_3 = \frac{a_3}{2 \cdot 3} x^3 + \frac{b_3}{2} x^2 y + \frac{c_3}{2} x y^2 + \frac{d_2}{2 \cdot 3} y^3$$
(13)

Эта функция является решением (10) и в соответствии с (6) напряжения σ_x , σ_y , τ_{xy} можно определить по формулам:

$$\sigma_x = \frac{\partial^2 \varphi_3}{\partial y^2} = c_2 x + d_3 y$$

$$\sigma_y = \frac{\partial^2 \varphi_3}{\partial x^2} = a_3 x + b_3 y$$

$$\tau_{xy} = \frac{\partial^2 \varphi_3}{\partial x \partial y} = -b_3 x - c_3 y$$

Если $d_3 \neq 0$, а $a_3 = b_3 = c_3 = 0$, то $\sigma_x = d_3 y$; $\sigma_y = \tau_{xy} = 0$, т.е. имеем случай чистого изгиба (рисунок 8).

Рисунок 8 - Чистый изгиб

Если $b_3 \neq 0$, а $a_3 = c_3 = d_3 = 0$, то $\sigma_x = \sigma_y = 0$; $\tau_{xy} = -b_3 x$ (рисунок 9)

Рисунок 9-Эпюры касательных напряжений

Подобное распределение касательных напряжений имеет место при решении задач, связанных с трением.

При решении более сложных задач удобно использовать принцип суперпозиций. Зная характер нагружения, наложением простых решений можно решить более сложную задачу.

При выборе полиномов 2-ой и 3-ей степени нет ограничений на выбор коэффициентов, так как уравнение (10) удовлетворяется во всех случаях.

Рассмотрим полином 4-й степени:

$$\varphi_4 = \frac{a_4}{4 \cdot 3} x^4 + \frac{b_4}{3 \cdot 2} x^3 y + \frac{c_4}{2} x^2 y^2 + \frac{d_4}{2 \cdot 3} x y^3 + \frac{e_4}{4 \cdot 3} y^4 \tag{14}$$

Если подставить (14) в (10), получим

$$\mathbf{e}_4 = -\left(2\mathbf{c}_4 + \mathbf{a}_4\right) \tag{15}$$

Уравнение (15) накладывает ограничения на выбор коэффициентов. Коэффициенты b_4 и d_4 остаются свободными. Также свободными остаются коэффициенты полиномов более низкого порядка. Если в уравнение (14) из всех коэффициентов только $d_4 \neq 0$, то

$$\sigma_{x} = d_{4}xy; \sigma_{y} = 0; \ \tau_{xy} = -\frac{d_{4}}{2}y^{2}, \qquad (16)$$

что соответствует схеме нагружения на рисунке 10.

Касательные напряжения, действующие по контуру пластинки дадут момент:

$$M = 2\tau \cdot \ell \cdot c - 2 \cdot \frac{1}{3}\tau \cdot c \cdot \ell = \frac{4}{3}\ell \cdot c \cdot d_4 \cdot \frac{c^2}{2} = \frac{2}{3}c^3 d_4 \cdot \ell$$
(17)

Этот момент уравновешивается нормальными напряжениями, действующими по торцам пластинки.

При выборе полинома 5-ой степени также будут ограничения на выбор коэффициентов уравнения (10).

Рассмотрим конкретный пример. Расчетная схема консоли, нагруженной силой на конце, представлена на рисунке 11.

Рисунок 11- Консоль, нагруженная силой на конце

Очевидно, что рассмотренная ранее задача может быть принята за основу. Но при этом надо «убрать» касательные напряжения с верхней и нижней поверхностей. Суммарную силу от касательных напряжений по боковой поверхности приравнять по величине к F, т.е. на рассмотренный ранее случай наложить состояние чистого сдвига, когда $\tau = \text{const} = -b_2$, а $\varphi_2 = b_2 xy$.

Функция φ этом случае имеет вид:

$$\varphi_2 = b_2 x y + \frac{d_4}{2 \cdot 3} x y^3, \tag{18}$$

$$\sigma_x = d_4 x y; \quad \sigma_y = 0; \quad \tau_{xy} = -b_2 - \frac{d_4}{2} y^2, \quad (19)$$

Поскольку при $y = \pm c$ $\tau_{xy} = 0$, $b_2 = -\frac{d_4}{2}c^2$, a $d_4 = -\frac{2b_2}{c^2}$

$$\int_{-c}^{c} \tau_{xy} dy = \int_{-c}^{c} \left(b_2 - \frac{2b_2}{c_2} y^2 \right) = \frac{4}{3} b_2 c = F^{-c}, \quad \text{откуда} \quad b_2 = \frac{3}{4} \frac{F}{c};$$
$$d_4 = -\frac{3F}{2c^3}.$$

Заменяя 2c = h получим $b_2 = \frac{3}{2} \frac{F}{c}$; $d_4 = -\frac{12F}{h^3}$ и подставляя полученные значения коэффициентов в (16) имеем

$$\sigma_{x} = -\frac{12F}{h^{3}}xy \ ; \ \sigma_{y} = 0 \ ; \ \tau_{xy} = \frac{3}{2}\frac{F}{h}\left(1 - \frac{4y^{2}}{h^{2}}\right)$$
(20)

Учитывая единичную толщину пластины, формулы (20) полностью соответствуют формулам Навье и Журавского для случая плоского поперечного изгиба консольной балки прямоугольного сечения сосредоточенной силой, где $\frac{1 \cdot h^3}{12}$ – момент инерции относительно нейтральной оси; $F \cdot x$ – изгибающий момент;

F – поперечная сила;

h – высота сечения.

Эпюры напряжений при этом принимают вид как на рисунке 8. Для того, чтобы приведенное решение было точным необходимо, чтобы внешние нагрузки по торцам были приложены строго в соответствии с приложенным решением. В противном случае в правой области будет определенная погрешность, однако, на удалении от торцов решение будет достаточно точным [2].

4 Пример расчета

Проектирование крупных объектов, как правило, содержит три необходимых элемента: испытание макета, аналитический расчет и расчет численным методом. Конечной целью задач теории упругости является расчет напряженно-деформированного состояния. В зависимости от геометрической формы реального объекта расчетная схема может быть сведена к линейной, плоской и объемной задаче [2]. Выберем наиболее простой случай – растяжение стержня.

Рассмотрим конкретный пример. Представленный на рисунке 12 стержень толщиной 5 мм, имеет размеры $2\ell = 1000$ мм, A = 100 мм². На стержень действует сила F = 10 кН и он изготовлен из стали Ст.3 ($E = 2 \cdot 10^5$ МПа; [σ] = 160 МПа). Требуется проверить стержень на прочность и жесткость и построить эпюры напряжений и перемещений. Эту задачу можно решить методами сопротивления материалов, численно и методами теории упругости с использованием функции напряжений ф. Рассмотрим последний способ. Ранее проанализированы частные случаи функции напряжений в виде полиномов разного порядка. Как уже отмечалось, при выборе полинома второго порядка функция напряжений имеет вид:

$$\varphi_2 = \frac{a_2}{2}x^2 + b_2xy + \frac{c_2}{2}y^2$$

В общем случае напряжения примут следующие значения:

$$\sigma_{x} = \frac{\partial^{2} \varphi}{\partial y^{2}} = c_{2}; \quad \sigma_{y} = \frac{\partial^{2} \varphi}{\partial x^{2}} = a_{2}; \quad \tau_{xy} = -\frac{\partial^{2} \varphi}{\partial x \partial y} = -b_{2}$$

Поскольку отсутствуют какие – либо силы кроме продольных, а также очевидно, что при у=0 отсутствуют касательные напряжения, уместно принять $a_2=b_2=0$, поэтому в любой точке стержня будут действовать только напряжения $\sigma_x = c_2$, т.е. мы получим задачу о растяжении стержня постоянного поперечного сечения. В качестве этого постоянного поперечного сечения уместно выбрать срединное площадью $A_2=200 \text{ мм}^2$, тогда напряжение растяжения составит:

$$\sigma_x = \frac{F}{A_{cp.}} = \frac{10^4}{200} = 50 \frac{H}{MM^2}$$

Поскольку $\varepsilon = \frac{dU}{dx}$, полное удлинение стержня определим по формуле: $U = \int_{0}^{2l} \varepsilon_x dx = \frac{1}{E} \int_{0}^{2l} \sigma_y dx = \frac{2Fl}{EA_{cp}} = 0,25$ мм

Перемещение срединного сечения в этом случае составит:

$$U = \int_{0}^{l} \varepsilon_{X} dx = \frac{Fl}{EA_{cp}} = 0,125 \,\text{MM}$$

Рассмотрим функцию напряжений в виде полинома 3-ей степени:

$$\varphi_3 = \frac{a_3}{2 \cdot 3} x^3 + \frac{b_3}{2} x^2 y + \frac{c_3}{2} x y^2 + \frac{d_3}{2 \cdot 3} y^3$$

В общем случае напряжения будут определяться по формулам:

$$\sigma_x = \frac{\partial^2 \varphi_3}{\partial y^2} = c_3 x + d_3 y$$
$$\sigma_y = \frac{\partial^2 \varphi_3}{\partial x^2} = a_3 x + b_3 y$$
$$\tau_{xy} = \frac{\partial^2 \varphi_3}{\partial x \partial y} = -b_3 x - c_3 y$$

Если все коэффициенты за исключением c_3 принять равными 0, то с учетом функции напряжений в виде полинома 2-ого порядка, на основании принципа наложения напряжения будут определяться по формулам:

$$\sigma_x = c_2 + c_3 x$$
$$\tau_{xy} = -c_3 y$$

Подобное выражение как раз и соответствует представлению функции напряжений в виде суммы полиномов 2-ого и 3-его порядков. Следует отметить, что в данном случае можно пренебречь касательными напряжениями ввиду малости угла γ (рис.12), тангенс которого составляет 0,02. В противном случае необходимо решать плоскую задачу теории упругости. Коэффициенты c_2 и c_3 определяем из условий:

При x==0
$$\sigma_x = \frac{F}{3A} = \frac{10^4}{300} = 33,33 \frac{H}{MM^2}$$
,
При x==21=1000 мм $\sigma_x = \frac{F}{A} = \frac{10^4}{100} = 100 \frac{H}{MM^2}$

Решением системы уравнений

 $c_2 = 33,33$

$$c_3 10^3 + 33.33 = 100$$

определяем с₃=0,06667, откуда

$$\sigma_x == 33,33 + 66,67 \cdot 10^{-3} x$$

По известной формуле определяем перемещение срединного сечения:

$$U = \int_{0}^{L} \varepsilon_{x} dx = \frac{1}{E} \int_{0}^{L} (c_{2} + c_{3}x) dx = \frac{1}{E} (c_{2}x + \frac{c_{3}x^{2}}{2}) = \frac{c_{2}l + c_{3}l^{2}/2}{E} = 0,125 \text{MM}$$

Аналогичным образом определим перемещение свободного конца:

$$U = \frac{1}{E} [c_2 2l + \frac{c_3 (2l)^2}{2}] = 0.333 \text{MM}$$

При выборе полинома 4-ой степени функция напряжений имеет вид:

$$\varphi_4 = \frac{a_4}{4 \cdot 3} x^4 + \frac{b_4}{3 \cdot 2} x^3 y + \frac{c_4}{2} x^2 y^2 + \frac{d_4}{2 \cdot 3} x y^3 + \frac{e_4}{4 \cdot 3} y^4$$

При этом на коэффициенты c_4 и a_4 накладываются ограничения [2]: $e_4 = -(c_4 + a_4)$, на остальные коэффициенты ограничений нет. С учетом введенных ограничений напряжения в общем случае будут определяться по формулам:

$$\sigma_x = \frac{\partial^2 \varphi_4}{\partial y^2} = c_4 x^2 + d_4 x y - (2c_4 + a_4) y^2$$

$$\sigma_y = \frac{\partial^2 \varphi_4}{\partial x^2} = a_4 x^2 + b_4 x y + c_4 y^2$$

$$\tau_{xy} = -\frac{\partial^2 \varphi_4}{\partial x \partial y} = -\frac{b_4 x^2}{2} - 2c_4 x y - d_4 y^2$$

Если принять $b_4 = d_4 = 0$, то формулы для определения напряжений примут вид:

$$\sigma_x = \frac{\partial^2 \varphi_4}{\partial y^2} = c_4 x^2 - (2c_4 + a_4)y^2$$
$$\sigma_y = \frac{\partial^2 \varphi_4}{\partial x^2} = a_4 x^2 + c_4 y^2$$

$$\tau_{xy} = -\frac{\partial^2 \varphi_4}{\partial x \partial y} = -2c_4 xy$$

В [3] показано, что при расчете стержней переменного сечения, аналогичных изображенному на рис. 12 имеют место зависимости:

$$\tau_{xy} = \sigma_x t g \gamma$$
$$\sigma_e = \sigma_x t g^2 \gamma$$

Поскольку в рассматриваемом случае $\gamma = 0,02$, т.е. величина 2-ого порядка малости, касательными и поперечными напряжениями можно пренебречь. Тогда в соответствии с принципом наложения и с учетом вариантов функции напряжений в виде полиномов 2-ого и 3-его порядков формула для определения растягивающих напряжений примет вид

 $\sigma_{x} = c_{2} + c_{3}x + c_{4}x^{2},$

При x=0 $\sigma_x = c_2 = 33,33$ МПа,

При x = 1 $\sigma_x = 50$ МПа

При x =21 $\sigma_x = 100$ МПа

Неизвестные c_3 и c_4 определяются решением системы:

$$50 = 33,33 + c_3 l + c_4 l^2$$

$$100 = 33,33 + 2c_3 l + 4c_4 l^2$$

Решение системы дает следующие результаты: $c_3 = 0, c_4 = 0,667 \cdot 10^{-4}$

С учетом полученных значений коэффициентов перемещение срединного сечения составит:

$$U = \frac{c_2 l + c_4 l^3 / 3}{E} = 0,97 \,\text{MM}\,,$$

Перемещение свободного конца составит:

$$U = \frac{c_2 2l + c_4 (2l)^3 / 3}{E} = 0,2775$$
мм. По результатам вычислений была

построена эпюра перемещений, представленная на рис. 12г (кривая 2).

Рисунок 12- Расчетная схема стержня переменного сечения. астержень, б-эпюра напряжений, в- графическое описание зависимости площади поперечного сечения от координаты х, г-эпюры перемещений.

5 Анализ результатов расчета

При использовании классического курса сопротивления материалов удлинение стержня, нагруженного, продольными силами, определяется по формуле [4]:

$$\Delta \ell = \int_0^\ell \frac{Ndx}{EA}$$

Поскольку стержень изготовлен из одного материала и на него действует одна постоянная сила, представленная формула преобразуется к виду:

$$\Delta \ell = \frac{N}{E} \int_{0}^{\ell} \frac{dx}{A(x)}$$

Для удобства аналитического описания зависимости площади поперечного сечения *A* от координаты *x*, представляем стержень (рисунок 12.а) в виде (рисунок12.в), приняв за начало координат точку О. Очевидно, что площадь произвольного поперечного сечения стержня определяется как:

$$A(x)=0,2x,$$

тогда полное удлинение стержня

$$\Delta \ell = \frac{N}{0,2E} \int_{\ell}^{3\ell} \frac{dx}{x} = \frac{N}{0,2E} \left(\ell n 3\ell - \ell n \ell \right)$$

что в численном выражении составляет:

$$\Delta \ell = \frac{10^4}{0,2 \cdot 2 \cdot 10^5} \left(\ell n 1500 - \ell n 500 \right) = 2,5 \cdot 10^{-1} (7,31 - 6,21) = 0,275 \text{ MM}$$

Сопоставляя результаты расчета двумя приведенными выше методами видно, что с увеличением степени полинома результат решения первым способом стремится к классическому (кривая 1), однако для полноты анализа необходимо экспериментальное подтверждение.

Очень часто макетные испытания крупных объектов проводят на десятикратно уменьшенных моделях. И в данном случае целесообразно провести испытание на растяжение стержня длиной 1000 мм и сравнивать результаты эксперимента с результатом расчета. Повторно проводить расчеты предложенным методом необязательно, поскольку решение как уже было показано выше будет сходиться к теоретическому. При этом чем выше будет степень полинома, а следовательно, и число уравнений системы, тем решение будет точнее. Именно этим и объясняется широкое распространение вычислительной техники, позволяющей оперативно решать большие системы уравнений. До настоящего времени для решения систем линейных уравнений широко использовались метод исключения Гаусса и метод прогонки.

На основании выполненных расчетов и проведенного эксперимента можно заключить, что применение в качестве математической модели полиномов дает результаты близкие к теоретическим решениям и имеет экспериментальное подтверждение. Уместно также предположить, что применение функции напряжений в классическом варианте повысит точность решения и позволит рассматривать более широкий круг задач.

25

6 Порядок оформления работы

Работа оформляется по аналогии с расчетно-графическими работами по сопротивлению материалов [5]. Пояснительная записка содержит задание, введение, необходимые расчеты с пояснениями, расчетные схемы и графики (рисунок 12.а – 12.г) с таблицами. В таблицах приводятся результаты расчета перемещений, напряжений и деформаций, полученных рассмотренными выше методами. Приводится оценка погрешности. Завершается пояснительная записка выводами и (или) основными результатами. На формате А 2 приводится основной графический материал (рисунок 12.а – 12.г) и наиболее важные таблицы.

В качестве рассчитываемой модели для любого индивидуального задания предлагается использовать расчетную схему стержня переменного сечения как на рис.12а. Значения величин А и l, соответствующие каждому варианту задания, приведены в таблице приложения. Толщина стержня во всех вариантах составляет 5 мм, что позволяет легко определить размеры поперечных сечений. Значения допускаемого напряжения и модуля упругости всех трех предлагаемых материалов (стали, меди и алюминия), а также наименование конкретной марки материала студенты выбирают по своему усмотрению на основе справочной литературы. В случае невыполнения условия прочности следует произвести корректировку величины А. Вторая строчка таблицы приложения содержит значения площади поперечного сечения стержня у неподвижной заделки.

26

ЛИТЕРАТУРА:

1Кузьмин, А. А. Основы теории упругости : учебное пособие / А. А. Кузьмин, Э.А. Павлова - СПб.; СПб ГТИ (ТУ), 2018.- 61 с.

2Тимошенко, С. П. Теория упругости: учебник для вузов / С. П. Тимошенко, Дж. Гудьер. – М.: Наука, 1975.- 576 с.

ЗБезухов, Н. И. Примеры и задачи по теории упругости, пластичности и ползучести: учебник для вузов / Н. И. Безухов – М., Высшая школа, 1965.-320 с.

4Феодосьев, В.И. Сопротивление материалов: учебник для вузов // В.И. Феодосьев.—11-е изд., стер., М.; МГТУ им. Баумана, 2003. – 591с.

5Бартенев, Д.А. Основы метода конечных элементов: учебное пособие для студентов механических специальностей // Д.А. Бартенев, Н.А. Марцулевич, О.В. Сташевская.- СПб.; СПб ГТИ(ТУ), 2008. – 30 с.

Приложение

(обязательное)

ℓ, мм	сталь		алюминий			медь			
	2A	3A	4A	2A	3A	4A	2A	3A	4A
400	1	2	3	4	5	6	7	8	9
420	10	11	12	13	14	15	16	17	18
440	19	20	21	22	23	24	25	26	27
460	28	29	30	31	32	33	34	35	36
480	37	38	39	40	41	42	43	44	45
500	46	47	48	49	50	51	52	53	54
520	55	56	57	58	59	60	61	62	63
540	64	65	66	67	68	69	70	71	72
560	73	74	75	76	77	78	79	80	81
580	82	83	84	85	86	87	88	89	90
600	91	92	93	94	95	96	97	98	99
620	100	101	102	103	104	105	106	107	108
640	106	110	111	112	113	114	115	116	117
660	118	119	120	121	122	123	124	125	126
680	127	128	129	130	131	132	133	134	135
700	136	137	138	139	140	141	142	143	144
720	145	146	147	148	149	150	151	152	153
740	154	155	156	157	158	159	160	161	162

Кафедра механики

Учебное пособие

Расчет стержня переменного сечения

Александр Алексеевич Кузьмин

Отпечатано с оригинал-макета. Формат 60х90 1/16

Печ..л. 1,81.

Санкт-Петербургский государственный технологический институт

(Технический университет)

190013, Санкт-Петербург, Московский пр., 26 Типография издательства СПб ГТИ (ТУ)