Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Национальный минерально-сырьевой университет «Горный»

Кафедра информатики и компьютерных технологий

ИНФОРМАТИКА

Методические указания по выполнению расчетнографического задания № 3

САНКТ-ПЕТЕРБУРГ 2016

УДК 004.67(076)

ИНФОРМАТИКА. Методические указания по выполнению расчетно-графического задания № 3 / Национальный минерально-сырьевой университет «Горный». Сост.: Г.Н. Журов, Л.Г Муста, СПб, 2016, 40 с.

В методических указаниях представлены варианты заданий, закрепляющие навыки работы в пакете MathCad, выработанные в ходе выполнения лабораторных работ. Рассмотрен пример решения одного варианта.

Методические указания предназначены для студентов направления 130400 «Горное дело».

Научный редактор доц. А.Б. Маховиков

Табл. 8. Ил. 11. Библиогр. 3.

© Национальный минерально-сырьевой университет «Горный», 2016

ЗАДАНИЕ

В расчетно-графическое задание входит:

1. Построение графиков сложных функций

1.1. Линейный вычислительный процесс

Требуется вычислить значение функции $y_1 = f(x)$ и $y_2 = g(x)$ при $x \in \left[x_{\text{начальное}}, x_{\text{конечное}}\right]$ с шагом h. Построить графики данных функций. Графики должны быть на одном рисунке. Исходные данные приведены в табл.1.

Таблипа 1

		Таолица Т
Вариант	Формула	Исходные данные
1	$y_1 = e^{a\cos x}(x\sin^2 x - 3\cos x);$	$a = \sqrt[4]{6}; x \in [0;3];$
1	$y_2 = \sin^2 x + a \cdot \cos x + 2$	h = 0.25
2	$y_1 = \frac{1}{3}(a \cdot \sin x - x)^2;$	$a = \sqrt[3]{5}; x \in [2;4];$
	$y_2 = \log_2 a \cdot \sin x - x $	h = 0.2
3	$y_1 = 2 \cdot 10^{-3} x^a;$	$a = \sqrt[5]{9}; x \in [1;20];$
J	$y_2 = \left(1 + \ln x^a + \ln^2 x\right)$	h = 1
4	$y_1 = \frac{1}{2} \left(x^a - \frac{1}{2} \right) \sin^2 x;$	$a = \sqrt[4]{10}; x \in [0;3];$
	$y_2 = \frac{1}{4} \sqrt{\left 1 - x^a\right }$	h = 0.25
	$y_1 = \arcsin(x^{2 \cdot a});$	$a = \sqrt[4]{0,0625};$
5	$v_2 = \sqrt[3]{x^{2 \cdot a} + 1}$	$x \in [-1;1];$
	72	h = 0.2
6	$y_1 = (2a)^{\frac{1}{2}} \sin x;$ $y_2 = e^{1-\sqrt{2x}}$	$a = \sqrt[3]{15}; x \in [1;4];$
	$y_2 = e^{1-\sqrt{2x}}$	h = 0.25

Вариант	Формула	Исходина паница
Вариант	Формула	Исходные данные
7	$y_1 = \frac{3x}{\ln^2 x};$ $y_2 = (\ln x - 1)^a$	$a = \sqrt[5]{9}; x \in [3;10];$ h = 0,5
8	$y_1 = x - \ln(1 + x^2) ;$ $y_2 = x - e^{ax}$	$a = \sqrt[4]{10}; x \in [0;3];$ $h = 0.25$
9	$y_1 = (1 + tg^2 ax)e^{-x};$ $y_2 = \frac{tgax}{e^x}$	$a = \sqrt[3]{20}; x \in [-3;3];$ $h = 0,5$
10	$y_1 = \arccos(\frac{x}{a});$ $y_2 = \left(\frac{a}{x} + \sin x\right)^2$	$a = \sqrt[4]{25}; x \in [0,1;2,1];$ $h = 0,25$
11	$y_1 = \frac{2\sqrt{x}(ax-2)}{1+\cos^2 x};$ $y_2 = xe^{(ax-2)}$	$a = \sqrt[4]{6}; x \in [1;6];$ $h = 0.25$
12	$y_{1} = \frac{\sin(1+2ax)}{1+x^{2}};$ $y_{2} = \ln(1+2ax)$	$a = \sqrt[4]{30}; x \in [0;6];$ $h = 0,5$
13	$y_1 = 2arctgx;$ $y_2 = \frac{2}{\sqrt{3}}\ln(a + \sqrt{x^2 + \frac{3}{\sqrt{2}}a})$	$a = \sqrt[5]{8}; x \in [1;8];$ $h = 0,5$

	продолжение таблицы т	
Вариант	Формула	Исходные данные
15	$y_1 = \frac{1}{2} (1 + x^a - \cos x),$	$a = \sqrt[4]{20}; x \in [4;16];$ h = 1
	$y_2 = \frac{1}{4}\sqrt{1+x^a}$,, 1
16	$y_1 = \arccos\left(\frac{x}{a}\right);$	$a = \sqrt[4]{12}; x \in [-1;1];$ h = 0,2
	$y_2 = \sqrt[3]{x^{3a} + 1}$	h = 0.2
1.5	$y_1 = \left(1 + \sin^2 ax\right)e^{-x};$	$a = \sqrt[3]{15}$; $x \in [-2;4]$;
17	$y_2 = \frac{\sin ax}{e^x}$	$a = \sqrt[3]{15}; x \in [-2;4];$ h = 0,5
18	$y_1 = (2a)^{\frac{1}{2}} \cos x; y_2 = e^{1-\sqrt{3}x}$	$a = \sqrt[4]{27}; x \in [-1;1];$
	$y_1 = (2a)^2 \cos x$, $y_2 = e^{x^2 + 4a}$	h = 0.2

1.2. Разветвляющийся вычислительный процесс

1.2.1. Деление на две ветви

Требуется вычислить значение функции y = f(x) при $x \in [x_{\text{начальное}}, x_{\text{конечное}}]$ с шагом h. Построить график данной функции. Исходные данные приведены в табл.2.

Таблица 2

		таолица 2
Вариант	Формула	Исходные данные
1	$y = \begin{cases} \sin(x-a), ecnu x-a < 4\\ \sin(\frac{1}{x-a}), ecnu x-a \ge 4 \end{cases}$	$a = 3; x \in [-6;6];$ h = 0,5
2	$y = \begin{cases} (a + \sin x)^2, ecnu \sin x < \cos x \\ (a + \cos x)^2, ecnu \sin x \le \cos x \end{cases}$	$a = 2; x \in [-4;4];$ h = 0,5

Вариант	Формула	Исходные данные
3	$y = x^2 + a^2 + \begin{cases} x^3, ecnu \ x > a \\ a^3, ecnu \ x \le a \end{cases}$	$a = 1; x \in [0;3];$ h = 0,25
4	$y = \begin{cases} e^{ 1-ax }, ec\pi u & a > x \\ e^{\sqrt{ 1-ax }}, ec\pi u & a \le x \end{cases}$	$a = 4; x \in [-2;2];$ h = 0,25
5	$y = \begin{cases} x^2 + a^2, ecnu & x^2 < a^2 \\ \sqrt{x^2 + a^2}, ecnu & x^2 \ge a^2 \end{cases}$	$a = 5; x \in [-4;4];$ h = 0,5
6	$y = \begin{cases} \sin^2 3x, ecnu & 3x < a \\ \sin^2 3x + a, ecnu & 3x \ge a \end{cases}$	$a = 2; x \in [-3;3];$ h = 0,5
7	$y = \begin{cases} a + x^3, ecnu & x \le a \\ a - x^3, ecnu & x > a \end{cases}$	$a = 2.5; x \in [-5.5];$ h = 0.5
8	$y = \begin{cases} x^2 + 2, ecnu & x > a \\ \sin(x^2 + a), ecnu & x \le a \end{cases}$	$a = 1,5; x \in [-3;4];$ h = 0,5
9	$y = \begin{cases} \sin(x^2 + a), ecnu & x < a \\ \cos(x^2 + a), ecnu & x \ge a \end{cases}$	$a = 1; x \in [-3;3];$ h = 0,5
10	$y = \begin{cases} 1 - \sin^3 x, ec \pi u & x \neq a \\ 0.29, ec \pi u & x = a \end{cases}$	$a = 0; x \in [-2;2];$ h = 0,25
11	$y = \begin{cases} \sin(x+1), & ecnu \ x < a \\ \log_2(x^2+2), & ecnu \ x \ge a \end{cases}$	$a = -2; x \in [-6;2];$ h = 0,5
12	$y = \begin{cases} \sqrt{ x }, \ ecnu \ x < a \\ \sqrt{ \sin x }, \ ecnu \ x \ge a \end{cases}$	$a = -1; x \in [-5;3];$ h = 0,5

_	1	тт
Вариант	Формула	Исходные данные
13	$y = \begin{cases} 1 + e^{-2x}, e c \pi u & x > a \\ 2,73x, e c \pi u & x \le a \end{cases}$	$a = 1; x \in [-3;3];$
13		h = 0.25
14	$y = \begin{cases} \cos(x+a), ec \pi u & x < a \\ \sin(x+a), ec \pi u & x \ge a \end{cases}$	$a = 4; x \in [-2;2];$
17	$\int \sin(x+a)$, если $x \ge a$	h = 0.25
1.5	$\int \sqrt{x+a}$, если $ x \le a$	$a = 2; x \in [-4;4];$
15	$y = \begin{cases} \sqrt{x+a}, \ ecnu \ x \le a \\ a+x, \ ecnu \ x > a \end{cases}$	h = 0.5
16	$y = \begin{cases} x^3 + a^3, ecnu \ x^3 < a^3 \\ \sqrt{x^3 + a^3}, ecnu \ x^3 \ge a^3 \end{cases}$	$a = 3; x \in [-3;3];$
10	$\int \sqrt{x^3 + a^3}, ecnu \ x^3 \ge a^3$	h = 0.5
17	$y = \begin{cases} \cos 4x, \ ec\pi u \ 4x > a \\ \cos 4x + a, \ ec\pi u \ 4x \le a \end{cases}$	$a = 2; x \in [-4;3];$
1 /	$\int_{0}^{y} \cos 4x + a, \ e c \pi u \ 4x \le a$	h = 0.5
18	$y = \begin{cases} 1 + \cos^2 x, ecnu x \neq a \\ 1, ecnu x = a \end{cases}$	$a = 1; x \in [-1;3];$
	y - 1 , если $x = a$	h = 0.25

1.2.2. Деление на три ветви

Требуется вычислить значение функции y = f(x) при $x \in [x_{\text{начальное}}, x_{\text{конечное}}]$ с шагом h. Построить график данной функции. Исходные данные приведены в табл.3

Таблина 3

		таолица 5
Вариант	Формула	Исходные данные
1	$y = \begin{cases} 3.5x, & ecnu \ x > 0 \\ x + \cos x, & ecnu \ -2 < x \le 0 \\ \sin 2x, & ecnu \ x \le -2 \end{cases}$	$x \in [-5;1];$ $h = 0,25$
2	$y = \begin{cases} \sin x, & ec\pi u \ x \le 0 \\ x + \ln(5 + x), & ec\pi u \ 0 < x < 1 \\ 3^x, & ec\pi u \ x \ge 1 \end{cases}$	$x \in [-4;4];$ $h = 0,25$

_	·	олжение таблицы 3
Вариант	Формула	Исходные данные
3	$y = \begin{cases} x - 1, & ecnu \ x > 1 \ unu \ x < -1 \\ x^3, & ecnu \ x = -1 \ unu \ x = 1 \\ \frac{x}{x^2 + 1}, & ecnu \ -1 < x < 1 \end{cases}$	$x \in [-8;8];$ $h = 0,4$
4	$y = \begin{cases} e^{-x^2}, & ecnu x > 0\\ \ln(1+x^2), & ecnu -3 < x \le 0\\ \sin x^2, & ecnu x \le -3 \end{cases}$	$x \in [-6;6];$ $h = 0,25$
5	$y = \begin{cases} x \sin^2 \frac{1}{x+3}, & ecnu \sin x < 0 \\ 0.5x, & ecnu \ 0 \le \sin x < 0.5 \\ e^{\sin x}, & ecnu \ \sin x \ge 0.5 \end{cases}$	$x \in [-2;2];$ $h = 0,25$
6	$y = \begin{cases} arctg \frac{1}{x+1}, & ecnu \ x > 2 \\ \frac{1-x}{1+x^2}, & ecnu \ x = 2 \\ \frac{x}{1+x^2}, & ecnu \ x < 2 \end{cases}$	$x \in [0;4];$ $h = 0,25$
7	$y = \begin{cases} e^{x} x , & ecnu \ x \le 0 \\ 3x, & ecnu \ 0 < x < 2 \\ \frac{x}{x+5}, & ecnu \ x \ge 2 \end{cases}$	$x \in [-1;5];$ $h = 0,25$

	•	олжение таблицы 3
Вариант	Формула	Исходные данные
8	$y = \begin{cases} x\sqrt{x^2 + 1}, & ecnu \ x > 1 \\ -x, & ecnu \ -2 < x \le 1 \\ x, & ecnu \ x \le -2 \end{cases}$	$x \in [-5;3];$ $h = 0,5$
9	$y = \frac{x^{2}(2+x)}{x^{2}+1} + \begin{cases} 4+x, ecnu \ x < 1 \\ 2x, ecnu \ 1 \le x < 2 \\ x, ecnu \ x \ge 2 \end{cases}$	$x \in [0;8];$ $h = 0,4$
10	$y = \begin{cases} (x^2 + 1)e^x, & ecnu \ x \le 1 \\ \frac{ x }{1 + x^2}, & ecnu \ 1 < x < 2 \\ 1 + x + x^2, & ecnu \ x \ge 2 \end{cases}$	$x \in [-1;5];$ $h = 0,25$
11	$y = \begin{cases} x + 2, & ecnu x > 2 \\ 2x + 2, & ecnu 2 \le x < 4 \\ 2, & ecnu x \ge 4 \end{cases}$	$x \in [-0;10];$ $h = 0,5$
12	$y = x^{2} + \begin{cases} \sqrt[3]{x}, ecnu & x > 0\\ 2x\sin x, ecnu & -3 < x \le 0\\ x, ecnu & x \le -3 \end{cases}$	$x \in [-6;2];$ $h = 0,5$
13	$y = \begin{cases} \cos(x-2), & ecnu \ x-2 \le 1 \\ \cos\left(\frac{1}{x-6}\right), & ecnu \ 1 < x-2 \le 2,4 \\ (x-2)^2, & ecnu \ x-2 > 2,4 \end{cases}$	$x \in [-4;4];$ $h = 0,25$

	•	олжение таблицы 3
Вариант	Формула	Исходные данные
14	$y = \begin{cases} \ln(x+1), \ ecnu \ x > -1 \\ (x+1)^3, \ ecnu \ -1 \le x < 3 \\ 3xe^{x+1}, \ ecnu \ x \ge 3 \end{cases}$	$x \in [-2;4]; h = 0,2$
15	$y = \begin{cases} \frac{x^2 - 1}{x + 1}, & ecnu \ x > 1 \\ \frac{x}{x^2 + 1}, & ecnu \ -1 \le x \le 1 \\ \frac{x}{x^2 - 1}, & ecnu \ x < -1 \end{cases}$	$x \in [-4;4];$ $h = 0.25$
16	$y = \begin{cases} x+1, & ecnu \ x > 2 \ unu \ x < -2 \\ x^2, & ecnu \ x = 2 \ unu \ x = -2 \\ \frac{x}{x^3+1}, & ecnu \ -2 < x < 2 \end{cases}$	$x \in [-3;3];$ $h = 0,25$
17	$y = \frac{x^3}{x^3 + 1} + \begin{cases} 2 - x, & ecnu \ x < 2 \\ 4x, & ecnu \ 2 \le x < 4 \\ x^2, & ecnu \ x \ge 4 \end{cases}$	$x \in [0;8];$ $h = 0,5$
18	$y = \begin{cases} \frac{x^3 + 1}{x - 1}, & ecnu x > 2\\ \frac{x^2}{x^3 - 1}, & ecnu 1 < x \le 2\\ \frac{x}{x^2 + 2}, & ecnu x \le 1 \end{cases}$	$x \in [-3;3];$ $h = 0,25$

2. Использование массивов и матричных формул

Требуется вычислить матричное выражение, заданное табл.4, в одну формулу.

Таблица 4

Вариант	Формула	Исходные данные
		$H = \begin{pmatrix} 1 & 0 & -1 & 2 \\ -2 & -4 & 2 & 1 \\ 0 & -3 & 0 & 1 \end{pmatrix}$
1	$((H_{34}B_{43})^T + E_{33} - D_{33})^T$	$B = \begin{pmatrix} 0 & 3 & 1 \\ 2 & 0 & 4 \\ -1 & -2 & 0 \\ 1 & 3 & 2 \end{pmatrix}$
		$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
		$D = \begin{pmatrix} 0 & -3 & 1 \\ 3 & -2 & 3 \\ 1 & -1 & 3 \end{pmatrix}$

	Продолжение таблицы 4	
Вариант	Формула	Исходные данные
2	$(Q_{34}^T D_{34} + E_{44})^T$	$Q = \begin{pmatrix} 1 & 0 & -1 & 2 \\ -2 & -4 & 2 & 1 \\ 0 & -3 & 0 & 1 \end{pmatrix}$ $D = \begin{pmatrix} 0 & 1 & 3 & 1 \\ 2 & -2 & 1 & 3 \\ -3 & 0 & 2 & 0 \end{pmatrix}$ $E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
3	$(E_{33} + H_{33} + D_{33}^T)Q_{34}$	$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $H = \begin{pmatrix} 0 & 2 & 3 \\ 1 & -3 & 2 \\ 2 & 0 & 1 \end{pmatrix}$ $D = \begin{pmatrix} 0 & -3 & 1 \\ 3 & -2 & 3 \\ 1 & -1 & 3 \end{pmatrix}$ $Q = \begin{pmatrix} 1 & 0 & -1 & 2 \\ -2 & -4 & 2 & 1 \\ 0 & -3 & 0 & 1 \end{pmatrix}$

Damasas	Фотого	Продолжение таолицы 4
Вариант	Формула	Исходные данные
4	$(Q_{34}B_{34}^T + E_{33} - D_{33})^T$	$Q = \begin{pmatrix} 0 & 1 & 3 & 1 \\ 2 & -2 & 1 & 3 \\ -3 & 0 & 2 & 0 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 0 & -1 & 2 \\ -2 & -4 & 2 & 1 \\ 0 & -3 & 0 & 1 \end{pmatrix}$ $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $D = \begin{pmatrix} 0 & 2 & 3 \\ 1 & -3 & 2 \\ 2 & 0 & 1 \end{pmatrix}$
5	$((Q_{34}^T + D_{43})H_{32})^T$	$Q = \begin{pmatrix} 1 & 0 & -1 & 2 \\ -2 & -4 & 2 & 1 \\ 0 & -3 & 0 & 1 \end{pmatrix}$ $D = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 3 & -1 \\ -2 & 0 & 4 \\ 3 & 1 & 0 \end{pmatrix}$ $H = \begin{pmatrix} -1 & 0 \\ 2 & 1 \\ 1 & 3 \end{pmatrix}$

		Продолжение таблицы 4
Вариант	Формула	Исходные данные
6	$(B_{23}^T + H_{32})(E_{22} + D_{22})$	$B = \begin{pmatrix} 0 & -1 & 2 \\ 1 & -2 & 0 \end{pmatrix}$ $H = \begin{pmatrix} 2 & -2 \\ -2 & 0 \\ 3 & 1 \end{pmatrix}$ $E = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} D = \begin{pmatrix} 0 & 2 \\ -3 & 0 \end{pmatrix}$
7	$(E_{44} + D_{44}^T)(Q_{43} - B_{43})$	$E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$ $D = \begin{pmatrix} 3 & 2 & 0 & 1 \\ 1 & 1 & 2 & 3 \\ -2 & 3 & 0 & 0 \\ -3 & 2 & 2 & 1 \end{pmatrix}$ $Q = \begin{pmatrix} 0 & 3 & 1 \\ 2 & 0 & 4 \\ -1 & -2 & 0 \\ 1 & 3 & 2 \end{pmatrix}$ $B = \begin{pmatrix} 2 & 1 & 1 \\ 2 & 0 & 4 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{pmatrix}$

		Продолжение таблицы 4
Вариант	Формула	Исходные данные
8	$(D_{34}^T(E_{33}+B_{33}+H_{33}))^T$	$D = \begin{pmatrix} 0 & 1 & 3 & 1 \\ 2 & -2 & 1 & 3 \\ -3 & 0 & 2 & 0 \end{pmatrix}$ $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $B = \begin{pmatrix} 0 & -3 & 1 \\ 3 & -2 & 3 \\ 1 & -1 & 3 \end{pmatrix}$ $H = \begin{pmatrix} 0 & 2 & 3 \\ 1 & -3 & 2 \\ 2 & 0 & 1 \end{pmatrix}$
9	$((E_{33} + H_{33})^T + B_{33})D_{32}$	$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ $H = \begin{pmatrix} 0 & 2 & 3 \\ 1 & -3 & 2 \\ 2 & 0 & 1 \end{pmatrix}$ $B = \begin{pmatrix} -1 & 1 & 3 \\ -2 & 3 & 1 \\ -3 & 2 & 0 \end{pmatrix}$ $D = \begin{pmatrix} 2 & -2 \\ -2 & 0 \\ 3 & 1 \end{pmatrix}$

Вариант	Формула	Исходные данные
Вариант	Формула $((D_{34}+B_{34})Q_{43})^T+E_{33}$	$D = \begin{pmatrix} 0 & 1 & 3 & 1 \\ 2 & -2 & 1 & 3 \\ -3 & 0 & 2 & 0 \end{pmatrix}$ $B = \begin{pmatrix} 1 & 0 & -1 & 2 \\ -2 & -4 & 2 & 1 \\ 0 & -3 & 0 & 1 \end{pmatrix}$
		$Q = \begin{pmatrix} 0 & 3 & 1 \\ 2 & 0 & 4 \\ -1 & -2 & 0 \\ 1 & 3 & 2 \end{pmatrix}$ $E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$

Вариант	Формула	Исходные данные
		$D = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 3 & -1 \\ -2 & 0 & 4 \\ 3 & 1 & 0 \end{pmatrix}$
11	$D_{43}(E_{33} + H_{33})^T + Q_{34}^T$	$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
		$H = \begin{pmatrix} 0 & 2 & 3 \\ 1 & -3 & 2 \\ 2 & 0 & 1 \end{pmatrix}$
		$Q = \begin{pmatrix} 1 & 0 & -1 & 2 \\ -2 & -4 & 2 & 1 \\ 0 & -3 & 0 & 1 \end{pmatrix}$

Вариант	Формула	Исходные данные
		$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
		$D = \begin{pmatrix} 0 & 2 & 3 \\ 1 & -3 & 2 \\ 2 & 0 & 1 \end{pmatrix}$
12	$(D_{33} + E_{33})^T + H_{34}Q_{43}$	$H = \begin{pmatrix} 0 & 1 & 3 & 1 \\ 2 & -2 & 1 & 3 \\ -3 & 0 & 2 & 0 \end{pmatrix}$
		$Q = \begin{pmatrix} 0 & 3 & 1 \\ 2 & 0 & 4 \\ -1 & -2 & 0 \\ 1 & 3 & 2 \end{pmatrix}$

Вариант	Формула	Исходные данные
	$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$	
		$D = \begin{pmatrix} 0 & 2 & 3 \\ 1 & -3 & 2 \\ 2 & 0 & 1 \end{pmatrix}$
13	$(E_{33} + D_{33})^T (Q_{34} B_{43})$	$Q = \begin{pmatrix} 0 & 1 & 3 & 1 \\ 2 & -2 & 1 & 3 \\ -3 & 0 & 2 & 0 \end{pmatrix}$
		$B = \begin{pmatrix} 0 & 3 & 1 \\ 2 & 0 & 4 \\ -1 & -2 & 0 \\ 1 & 3 & 2 \end{pmatrix}$

Вариант	Формула	Исходные данные
		$D = \begin{pmatrix} 0 & 2 & 1 \\ 1 & 3 & -1 \\ -2 & 0 & 4 \\ 3 & 1 & 0 \end{pmatrix}$
14	$(D_{43} + H_{34}^T)(E_{33} + Q_{33})^T$	$H = \begin{pmatrix} 1 & 0 & -1 & 2 \\ -2 & -4 & 2 & 1 \\ 0 & -3 & 0 & 1 \end{pmatrix}$
		$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
		$Q = \begin{pmatrix} 0 & 2 & 3 \\ 1 & -3 & 2 \\ 2 & 0 & 1 \end{pmatrix}$

	*	продолжение таолицы 4
Вариант	Формула	Исходные данные
		$E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$
15	$(((E_{44} + Q_{44})D_{42})H_{23})^T$	$Q = \begin{pmatrix} 3 & 2 & 0 & 1 \\ 1 & 1 & 2 & 3 \\ -2 & 3 & 0 & 0 \\ -3 & 2 & 2 & 1 \end{pmatrix}$
		$D = \begin{pmatrix} 0 & 3 \\ -1 & 2 \\ 1 & -2 \\ -3 & 0 \end{pmatrix}$
		$H = \begin{pmatrix} 0 & -1 & 2 \\ 1 & -2 & 0 \end{pmatrix}$

		Продолжение таолицы 4
Вариант	Формула	Исходные данные
$16 \qquad (E_{44} - D_{44}^T)(Q_{43} + B_{43})$	$E = \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{pmatrix}$	
	$(E - D^T)(O + R)$	$D = \begin{pmatrix} 3 & 2 & 0 & 1 \\ 1 & 1 & 2 & 3 \\ -2 & 3 & 0 & 0 \\ -3 & 2 & 2 & 1 \end{pmatrix}$
	$(E_{44} - D_{44})(Q_{43} + D_{43})$	$Q = \begin{pmatrix} 2 & 3 & 1 \\ 3 & 1 & 4 \\ -1 & -2 & 0 \\ 1 & 3 & 2 \end{pmatrix}$
		$B = \begin{pmatrix} 1 & 2 & 1 \\ 3 & 0 & 4 \\ 1 & 2 & 0 \\ 1 & 3 & 0 \end{pmatrix}$

Вариант	Формула	Исходные данные
		$D = \begin{pmatrix} 2 & 2 & 3 \\ 0 & -3 & 2 \\ 2 & 0 & 1 \end{pmatrix}$
		$E = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$
17	$(D_{33} - E_{33})^T - H_{34}Q_{43}$	$H = \begin{pmatrix} 0 & 1 & 3 & 1 \\ 4 & -2 & 1 & 3 \\ -3 & 0 & 2 & 0 \end{pmatrix}$
		$Q = \begin{pmatrix} 0 & 3 & 1 \\ 2 & 0 & 4 \\ -1 & -2 & 0 \\ 1 & 3 & 2 \end{pmatrix}$

3. Решение систем линейных алгебраических уравнений

Требуется вычислить систему линейных алгебраических уравнений в матричном виде, сделать проверку решения. Исходные данные приведены в табл. 5.

Таблица 5

	таолица 5
Вариант	Система линейных уравнений
1	$\begin{cases} x_1 - 2x_2 + 6x_3 = -28 \\ 3x_1 + 3x_3 = -6 \\ -2x_1 + x_2 - 4x_3 = 15 \end{cases}$
2	$\begin{cases} 2x_1 + x_3 = 6 \\ 4x_1 - 3x_2 - 2x_3 = -1 \\ 2x_2 + 7x_3 = 12 \end{cases}$

Продолжение таблиць			
Вариант	Система линейных уравнений		
3	$\begin{cases} -3x_1 + 2x_3 = 5 \\ 2x_1 + 4x_2 + 4x_3 = -2 \\ x_1 - 2x_2 + 5x_3 = 31 \end{cases}$		
4	$\begin{cases} 3x_2 + 2x_3 = 2\\ -2x_1 + 6x_2 = -22 \end{cases}$		
	$\begin{cases} -2x_1 + 6x_2 = -22 \\ 4x_1 - 2x_2 - x_3 = 20 \end{cases}$		
	$\int 5x_1 + 2x_2 + x_3 = 21$		
5	$\left\{-2x_1-4x_2+2x_3=-2\right\}$		
	$\begin{cases} -2x_1 - 4x_2 + 2x_3 = -2 \\ 7x_2 + 8x_3 = -14 \end{cases}$		
	$6x_1 - 2x_2 = 18$		
6	$\begin{cases} 4x_1 + 3x_2 + 4x_3 = -1 \\ 6x_2 + x_3 = -18 \end{cases}$		
	*		
	$8x_2 + 9x_3 = 38$		
7	$\begin{cases} 2x_1 + 4x_2 - 2x_3 = -14 \end{cases}$		
	$-3x_1 + 2x_2 + x_3 = -7$		
	$2x_1 + 4x_2 + x_3 = 2$		
8	$\begin{cases} -x_1 + 6x_2 + 8x_3 = 17 \end{cases}$		
	$3x_2 - 12x_3 = -54$		
9	$\begin{cases} -8x_1 + 2x_2 + 2x_3 = 12 \\ 4x_1 + 4x_2 = 8 \end{cases}$		
	$4x_1 + 4x_2 = 8$		

Продолжение таблицы		
Вариант	Система линейных уравнений	
10	$\begin{cases} 7x_1 + 6x_2 + 8x_3 = 64 \\ 2x_1 + 3x_2 - 5x_3 = -19 \\ 4x_1 + 5x_2 + 2x_3 = 29 \end{cases}$	
11	$\begin{cases} 9x_1 + 7x_2 - x_3 = 39 \\ -3x_2 + 4x_3 = -9 \\ 3x_1 + x_2 + 9x_3 = 9 \end{cases}$	
12	$ \begin{cases} 5x_1 + x_3 = 25 \\ 6x_1 + 7x_2 + 10x_3 = 81 \\ -2x_1 + 4x_2 + x_3 = 1 \end{cases} $	
13	$\begin{cases} -x_1 + 8x_2 - 3x_3 = 1 \\ 8x_1 + 2x_2 = -38 \\ -5x_2 + 7x_3 = -34 \end{cases}$	
14	$\begin{cases} -6x_1 + 7x_2 - 4x_3 = -44 \\ 3x_1 + 6x_2 + 6x_3 = 57 \\ 5x_1 + 4x_2 + 7x_3 = 71 \end{cases}$	
15	$\begin{cases} -x_1 - 7x_2 + 6x_3 = -14 \\ 2x_1 + 5x_2 + 2x_3 = 19 \\ 9x_1 + 6x_2 + 6x_3 = 69 \end{cases}$	
16	$\begin{cases} -x_2 - 2x_3 = 2 \\ -4x_1 + x_2 + x_3 = 10 \\ 4x_1 - 3x_2 = -3 \end{cases}$	

продолжение наслиды			
Вариант	Система линейных уравнений		
	$\left(-x_1 + 2x_3 = 3\right)$		
17	$\begin{cases} x_1 + 4x_2 + 4x_3 = -2 \end{cases}$		
	$2x_1 - 2x_2 + 5x_3 = 20$		
	$\int x_1 + x_2 + 8x_3 = 10$		
18	$\begin{cases} 2x_1 - 3x_2 - 5x_3 = -6 \end{cases}$		
	$x_1 + x_2 + 2x_3 = 4$		

4. Решение нелинейных уравнений Требуется найти корни нелинейного уравнения f(x) = 0. Исходные данные приведены в табл. 6.

Таблица 6

Вариант	f(x)
1	$x^2 - 2x + 0.5^x$
2	$(x-2)^2 2^x$
3	$2\sin\left(x+\frac{\pi}{3}\right)-0.5x^2+1$
4	$[\log_2(-x)]\cdot(x+2)+1$
5	$(x-4)^2 \cdot \log_{0,5}(x-3) + 1$
6	$e^x + x + 1$
7	$\cos(x+0.5)-x^3$
8	$x \lg(x+1) - 1$
9	$\sin(x-0.5) - x + 0.5$
10	$[(x-2)^2-1]\cdot 2^x-1$
11	$(x-3)^2 \log_{0,5}(x-2) + 1$

Продолжение таблицы 6

Вариант	f(x))
12	$x \cdot \log_3(x+1) - 1$
13	$x^2\cos 2x+1$
14	$x^2-20\sin x$
15	$5\sin x - x$
16	$2\sin\left(x-\frac{\pi}{3}\right)-x^2+0.5$
17	$[\log_2(x+2)](x-1)-1$
18	$0.5^x - 3 + (x+1)^2$

5. Решение систем нелинейных уравнений. Требуется решить систему нелинейных уравнений $\begin{cases} f_1(x) = 0 \\ f_2(x) = 0 \end{cases}$. Исходные данные приведены в табл. 7.

Таблица 7

Вариант	$f_1(x)$	$f_2(x)$
1	$tg(xy+0,3)-x^2$	$0.9x^2 + 2y^2 - 1$
2	$\sin(x+1) - y - 1,2$	$2x + \cos y - 2$
3	$tg(xy)-x^2$	$0.6x^2 + 2y^2 - 1$
4	$2y - \cos(x+1)$	$x + \sin y + 0.4$
5	$\sin(x+y)-1.3x$	$x^2 + y^2 - 1$
6	$\cos y + x - 1,5$	$2y - \sin(x - 0.5) - 1$
7	$tg(xy+0,1)-x^2$	$0.5x^2 + 2y^2 - 1$
8	tg(x-y)-x	$x^2 + 2y^2 - 1$
9	$\cos(x-1) - y - 0.8$	$x - \cos y - 2$

Вариант	$f_1(x)$	$f_2(x)$
10	$\cos(y+0.5) - x - 2$	$\sin x - 2y - 1$
11	$\sin(x-y)-x+1$	$x^2 - y^2 - \frac{3}{4}$
12	$\cos(x+0.5)-y-2$	$\sin y - 2x - 1$
13	$\sin(x+y) - 1.1x - 0.1$	$x^2 + y^2 - 1$
14	$\sin x + 2y - 1,6$	$\cos(y-1) + x - 1$
15	$\cos(x-1) + y - 0.5$	$x - \cos y - 3$
16	$\sin y + 2x - 2$	$\cos(x-1) + y - 0.7$
17	$\sin(x+y)-1.5x$	$x^2 + y^2 - 1$
18	$tg(xy+0,3)-x^2$	$0.5x^2 + 2y^2 - 1$

6. Вычисление определенных интегралов.

Требуется вычислить определенный интеграл $J = \int_a^b f(x) dx$

Таблица 8

			Тиолица
Вариант	а	b	f(x)
1	0,8	1,6	$(x^2-1)\sin(x-0.5)$
2	1,2	2	$\frac{lg(x+2)}{x}$
3	1,4	2,1	$\frac{1}{\sqrt{3x^2-1}}$
4	0,6	1,4	$\frac{\cos x}{x+1}$
5	2,2	2,6	$\sqrt{x^2+0.6}$
6	0,2	0,28	$\sqrt{x+1}\cos(x^2)$

1			продолжение таолицы о
Вариант	а	b	f(x)
7	0,15	0,5	$\frac{1}{\sqrt{2x^2 + 1.6}}$
8	1,4	2,2	$\frac{lg(x^2+2)}{x+1}$
9	2,3	3,5	$\sqrt{x^2-4}$
10	0,4	1,2	$(2x+0.5)\sin x$
11	0,32	0,66	$\sqrt{x^2 + 2.3}$
12	1,4	3	$x^2 \lg x$
13	0,18	0,98	$\frac{\sin x}{x+1}$
14	0,2	1	$\frac{tg(x^2)}{x^2+1}$
15	2,5	3,3	$\frac{lg(x^2+0.8)}{x-1}$
16	0,5	1,3	$\frac{1}{\sqrt{x^2+1}}$
17	0,6	0,72	$\sqrt{(\sqrt{x}+2)tg^2x}$
18	1,4	2,6	$\frac{(\sqrt{x}+2)tg2x}{\sqrt{1,5x^2+0.7}}$

Затем требуется написать отчет, используя текстовый редактор Microsoft Word.

Отчет должен содержать титульный лист, аннотацию, оглавление (выполненное средствами Microsoft Word), основную часть, заключение, библиографический список. В отчете должны

быть представлены фрагменты документа MathCad с решением каждой задачи.

ПРИМЕР ВЫПОЛНЕНИЯ РАСЧЕТНО-ГРАФИЧЕСКОГО ЗАДАНИЯ

1. Построение графиков сложных функций.

1.1 Линейный вычислительный процесс.

Требуется вычислить значение $y_1 = \frac{2x}{\sin^2 x}$ и $y_2 = (\cos x + 2)^a$ при $x \in [2,9]$ с шагом h = 0,5, где $a = \sqrt[4]{8}$. Построить графики данных функций. Графики должны быть на

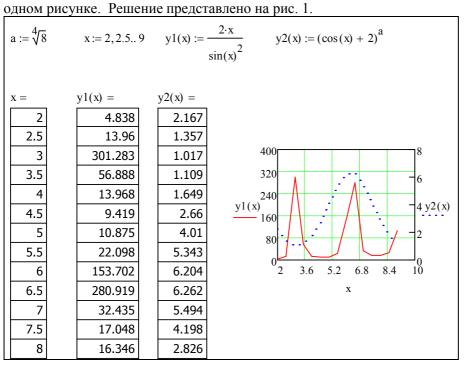


Рис. 1. Фрагмент документа MathCad с решением задачи 1.1

Разветвляющийся вычислительный процесс Деление на две ветки

Требуется вычислить значение функции
$$y = \begin{cases} a - x^2 , \ ecnu \ |x - 1| \le a \\ \frac{1}{a - x^2} , \ ecnu \ |x - 1| > a \end{cases}$$
 при $x \in [-4, 6]$ с шагом $h = 0, 5$, где $a = 2, 5$.

Решение представлено на рис. 2.

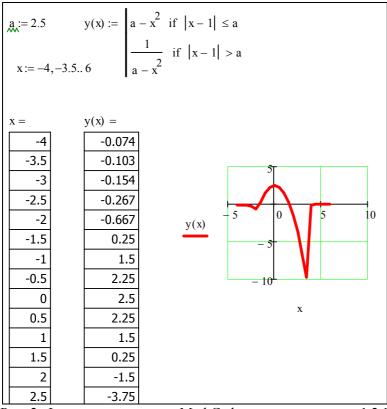


Рис. 2. Фрагмент документа MathCad с решением задачи 1.2.1

Деление на три ветки.

Требуется вычислить значение функции
$$y = \begin{cases} \sin x, \ ecnu \ x \leq 1 \\ 1+x^2, \ ecnu \ 1 < x < 1,5 \ \text{при} \ x \in \left[-1,2\right] \ \text{с шагом} \ h = 0,1 \ . \\ \cos x, \ ecnu \ x \geq 1,5 \end{cases}$$

Построить график данной функции.

Решение представлено на рис. 3

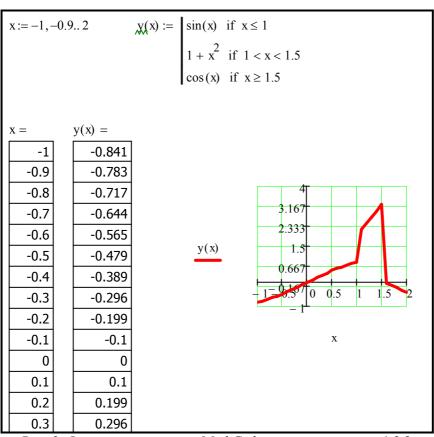


Рис. 3. Фрагмент документа MathCad с решением задачи 1.2.2

2. Использование массивов и матричных формул.

Требуется вычислить матричное выражение $\left(((E_{44}+Q_{44})D_{43})H_{33}\right)^T$ в одну формулу.

Решение представлено на рис. 4.

$$E := identity(4) \qquad Q := \begin{pmatrix} 3 & 2 & 0 & 1 \\ 1 & 1 & 2 & 3 \\ -2 & 3 & 0 & 0 \\ -3 & 2 & 2 & 1 \end{pmatrix} \qquad D := \begin{pmatrix} 0 & 3 & -3 \\ -1 & 2 & 3 \\ 1 & -2 & 4 \\ -3 & 0 & 1 \end{pmatrix} \qquad \overset{\text{H}}{\text{W}} := \begin{pmatrix} 2 & 1 & 1 \\ -3 & 3 & 2 \\ 0 & -1 & -2 \end{pmatrix}$$

$$[[(E + Q) \cdot D] \cdot H]^T = \begin{pmatrix} -58 & -27 & 2 & 15 \\ 48 & -14 & -27 & -58 \\ 37 & -31 & -44 & -74 \end{pmatrix}$$

Рис. 4. Фрагмент документа MathCad с решением задачи 2

3. Решение систем линейных алгебраических уравнений.

Требуется решить систему линейных алгебраических $\begin{cases} 2x_1+3x_3=4\\ 4x_1-3x_2-2x_3=-5\text{ в} & \text{матричном} & \text{виде,} & \text{сделать}\\ 2x_2+7x_3=2 \end{cases}$

проверку решения.

Решение представлено на рис. 5.

$$A := \begin{pmatrix} 2 & 0 & 3 \\ 4 & -3 & -2 \\ 0 & 2 & 7 \end{pmatrix} \qquad B := \begin{pmatrix} 4 \\ -5 \\ 2 \end{pmatrix} \qquad X := A^{-1} \cdot B \qquad X = \begin{pmatrix} 8 \\ 15 \\ -4 \end{pmatrix}$$

$$A \cdot X = \begin{pmatrix} 4 \\ -5 \\ 2 \end{pmatrix}$$

Рис.5. Фрагмент документа MathCad с решением задачи 3

4. Решение нелинейных уравнений.

Требуется найти корни нелинейного уравнения $2e^x + 3x^2 - 10 = 0$.

Решение представлено на рис 6-8.

Для того чтобы узнать, сколько корней имеет наше уравнение и найти начальные приближения корней, строим графики функций (рис. 6) f1(x) и f2(x), где $f1(x)=e^x$, $f2(x)=10-3x^2$. Координаты точек пересечения и будут результатом решения.

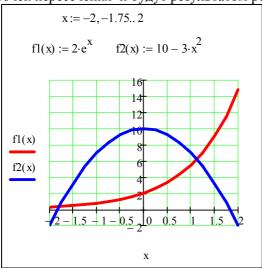


Рис.6 Фрагмент документа MathCad

Мы видим, что наше уравнения имеет два корня. Считаем с разными начальными приближениями и находим корни (рис. 7,8)

$$x := -2$$
 $x := 1.5$ GivenGiven $2 \cdot e^x + 3x^2 - 10 = 0$ $2 \cdot e^x + 3x^2 - 10 = 0$ Find(x) = -1.795Find(x) = 1.128

Рис. 7,8. Фрагменты документа MathCad с решением задачи 4

5. Решение систем нелинейных уравнений.

Требуется решить систему нелинейных уравнений

$$\begin{cases} y - \sin(x+1) - 0.8 = 0\\ \sin(y-1) + x - 1.3 = 0 \end{cases}$$

Решение представлено на рис. 9-10.

Построим графики функций: $\begin{cases} y = -\sin(x+1) + 0.8 \\ x = 1.3 - \sin(y-1) \end{cases}$

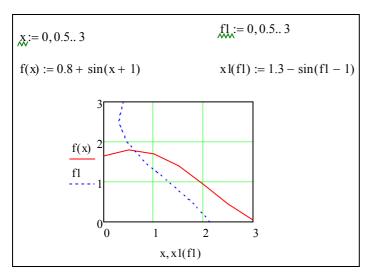


Рис. 9. Фрагменты документа MathCad Присвоим х и у начальные значения и используем блок Given-Find:

Рис. 10. Фрагменты документа MathCad с результатами решения **6. Вычисление определенных интегралов.**

Требуется вычислить определенный интеграл

$$J = \int_{1.5}^{3} \frac{x+1}{2} \lg \left(\frac{x^2}{2} \right) dx$$

Решение представлено на рис. 11.

$$\int_{1.5}^{3} \frac{x+1}{2} \cdot \log\left(\frac{x^2}{2}, 10\right) dx = 0.998$$

Рис. 11. Фрагменты документа MathCad с результатами решения

РЕКОМЕНДАТЕЛЬНЫЙ БИБЛИОГРАФИЧЕСКИЙ СПИСОК

- 1. Информатика. Базовый курс: учебное пособие / под ред. С.В. Симоновича. СПб. и др.: Питер, 2012. 637 с.
- 2. Информатика: Учебник для вузов / Под ред. Н.В. Макаровой 3-е изд., перераб. М.: Финансы и статистика, 2009. 768 с.
- 3. Веденеева Е.А. Функции и формулы Excel 2007. Библиотека пользователя. –СПб.: Питер, 2008. –384 с

ОГЛАВЛЕНИЕ

ВВЕДЕНИЕОшибка! Закладка не опреде	лена.
ЗАДАНИЕ	3
1. Построение графиков сложных функций	
1.1. Линейный вычислительный процесс	3
1.2. Разветвляющийся вычислительный процесс	5
1.2.1. Деление на две ветви	5
1.2.2. Деление на три ветви	7
2. Использование массивов и матричных формул	11
3. Решение систем линейных алгебраических уравнений	24
4. Решение нелинейных уравнений	27
5. Решение систем нелинейных уравнений	28
6. Вычисление определенных интегралов.	29
Пример выполнения расчетно-графического задания	31
Рекомендательный библиографический список	38