РЕШЕНИЕ СИСТЕМ ЛИНЕЙНЫХ АЛГЕБРАИЧЕСКИХ УРАВНЕНИЙ В ТАБЛИЧНОМ ПРОЦЕССОРЕ MICROSOFT EXCEL. РАСЧЕТНО-ГРАФИЧЕСКОЕ ЗАДАНИЕ

Задача определения решения системы линейных алгебраических уравнений имеет давнюю традицию. Существует много методов решения таких систем. Остановимся на двух из них в силу того, что они легко реализуются в табличном процессоре Microsoft Excel. Первый способ - матричный. Систему линейных алгебраических уравнений (1) можно записать как матричное уравнение A-X=B, где

$$\begin{cases} ax + by + cz = d \\ fx + gy + hz = k \\ lx - my + nz = p \end{cases}$$
(1)

А - матрица, составленная из коэффициентов системы,

Х - столбец искомого решения (2)

В – столбец свободных членов.

Если решение существует, то существует обратная матрица
$$A^{-1}$$
 - матрица, умножив которую на исходную получается единичная матрица, т.е.

 $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$

$$A^{-1} \cdot A = E \tag{3}$$

(2)

где E - единичная матрица (матричный аналог числа 1, матрица, у которой элементы на главной диагонали равняются единице, а остальные элементы - нули). Как известно, уравнение можно умножать на число, отличное от нуля, что не изменит его решения. Умножив матричное уравнение на обратную матрицу, приходим к уравнению $A^{-1} \cdot A \cdot X = A^{-1} \cdot B$. Используя свойство обратной матрицы, можем заменить произведение обратной матрицы на прямую единичной матрицей, что приведет уравнение к виду $E \cdot X = X$. В свою очередь, произведение единичной матрицы на любую матрицу равняется этой матрице, следовательно, уравнение преобразуется к виду

$$X = A^{-1} \cdot B \tag{4}$$

Таким образом, приходим к уравнению (2), из которого следует, что решение системы линейных алгебраических уравнений можно определить произведением обратной матрицы на столбец свободных членов. Это выполняется в табличном процессоре Microsoft Excel последовательным применением функций МОБР (определение обратной матрицы) и МУМНОЖ (умножение матрицы на матрицу) категории функций «Математические». Функция МОБР имеет один аргумент - диапазон ячеек, содержащих матрицу. Функция МУМНОЖ имеет два аргумента - диапазон ячеек со второй матрицей.

Для проверки правильности найденного решения вычислим произведение исходной матрицы на найденный столбец решения. Если результат совпадает со столбцом свободных членов В, то решение найдено правильно.

Решение системы линейных алгебраических уравнений с помощью уравнения (3) называется матричным способом решения системы линейных алгебраических уравнений.

Вторым методом решения систем линейных алгебраических уравнений является метод Крамера, по которому решение системы линейных алгебраических уравнений

$$\begin{cases} a_{11}x + a_{12}y + a_{13}z = b_1 \\ a_{21}x + a_{22}y + a_{23}z = b_2 \\ a_{31}x - a_{32}y + a_{33}z = b_3 \end{cases}$$

находят как отношение определителя вспомогательной матрицы к определителю системы. Вспомогательную матрицу получают заменой столбца с коэффициентами искомой переменной столбцом свободных членов т.е.

$$x = \frac{\Delta_1}{\Delta}, y = \frac{\Delta_2}{\Delta}, z = = \frac{\Delta_3}{\Delta},$$

$$\Delta = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix},$$
$$\Delta_1 = \begin{vmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{vmatrix}, \ \Delta_2 = \begin{vmatrix} a_{11} & b_1 & a_{13} \\ a_{21} & b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{vmatrix}, \ \Delta_3 = \begin{vmatrix} a_{11} & a_{12} & b_1 \\ a_{21} & a_{22} & b_2 \\ a_{31} & a_{32} & a_{33} \end{vmatrix}.$$

Следовательно, для получения решения нужно вычислить четыре определителя и найти их отношения.

Решение системы линейных алгебраических уравнений методом Крамера часто используют при ручном счёте.

Задание: Проверить справедливость утверждения $\sqrt[3]{x_1 + x_2 + x_3 + x_4} > 2.68$, где x_1 , $x_2 x_3$, x_4 - решение системы линейных алгебраических уравнений

 $\begin{cases} 24 \cdot x_1 + 6 \cdot x_2 - 5 \cdot x_3 + 5 \cdot x_4 = 6 \\ 2 \cdot x_1 + 12 \cdot x_2 + 3 \cdot x_4 = -3 \\ 3 \cdot x_1 + 10 \cdot x_2 - 22 \cdot x_3 + x_4 = 8 \\ 5 \cdot x_2 - 2 \cdot x_3 + 13 \cdot x_4 = -13 \end{cases}$

Решение. В первую очередь, нужно вычислить решение системы. Это можно сделать одним из двух способов:

<u>1 способ</u>. Заполняем диапазон ячеек A1:D4 Microsoft Excel матрицей коэффициентов перед неизвестными системы (рис. 2.1). Отсутствие какого либо неизвестного уравнения означает что коэффициент перед ним равен улю

Arial Ca	AL.	10	X K Y	이 물 물	三王 王	16 49 E	- 00 -
E4	- f	1					
A	8	G	DI	E Sec	F	G	H
24	6	-5	5				
1	12	0	3		1		
3	10	-22	1				
0	5	-2	13		1	E 0	

Рис. 2.1. Табличка Microsoft Excel с заданной матрицей коэффициентов системы

Для получения решения с использованием обратной матрицы в первую очередь нужно вычислить матрицу, обратную матрице коэффициентов системы. Используем для этого функцию МОБР. Получение обратной матрицы реализуется в три этапа:

1) выделить диапазон ячеек Е1:Н4, в который будет записана обратная матрица (рис. 2.2).

91	生动机 日	равка <u>В</u> и	а Вставк	а Фор	мат Серенс Дагелые Окно Справка – 🕅
(m)	Arial C	yr	10	- *	KY町前部国社は第一日・3・
	E1	-	fs.	Pressed By (UPPE)	an ann a' an the same an an an ann ann ann an thar ann ann an a' Crìomhann ann an an an an ann an ann an an an
526	A	B	C	D	E F G H
T.	24	6	-5	5	State of the second
20	1	12	0	3	
311	3	10	-22	1	and the second
	0	5	-2	13	and the second

Рис. 2.2. Табличка Microsoft Excel с выделенным диапазоном для обратной матрицы

2) вызвать функцию МОБР и задать её аргумент - диапазон ячеек, содержащий матрицу коэффициентов системы (рис. 2.3, 2.4);

Мастер функций - шаг 1 из 2	2 2
Доиск функции:	
Введите краткое описание действия, которое нужно выполнить, и нажиите кнопку "Найти"	Найти
Категория: Математические	
выберите функцино:	
ТАЛН ГРАДУСЫ ЗНАК КОРЕНЬ МОПРЕД МУЛИНОЖ	
МОБР(массив) Возвращает обратную матрицу (катрица хранится в мас	сиве).
Справка по этой функции	Отлена

Рис. 2.3. Табличка Microsoft Excel с вызовом функции МОБР

E	icrosoft Ex	rcel - Kujir	61	ANTER ST		The state		
(四)	айл	Іравка <u>В</u> и	а Вставж	a Pope	ит Сере	к Данные	<u>Окно</u> <u>С</u> п	равка _ 🗗 🗙
1	Anaro		- 10	×	K Y I	新草 福田		由••••
	MOSP	+ X V	后 =MO	6P(A1:D	t)		HE CORDER THE REPORT	
	A	B	0	0	E	F	G	H T
1	24	6	-5	5 (A1:D4)			Palifiza III
4	1	12	0	3		and states		
	 	5	-22	13			No. I and a lot	NATIONAL CONTRACTOR
Ante	INCONTRAL (DAY)	and the second		IST INCOME	Contraction of	E SHOTHER	1 Calebra	
-MCF	20. Denotiti de de de		EUT 24		CACILITAR			
		M	accie Al:	D4			= {24;6;	5;5:1;12;0;3
E.C.		12 Chi	1		116 J.		≈ (n n43	075560000370-1
Возв	ращает обр	атную катр	натри	ца хранит		e).	(Option of the second s	
							- Netter	
				12:22				
		M	ACCHB 4910	ловой масс	ие с равны	н количествои	строк и стол	бире, либо
			Дис	10309 1091	Maccino.			
								New York Contraction
				- Franciska		- Bacant		
Grip		A CYNRCEMM	Эна	HEHHE: 0.0	13092557		OK	Отжена
13th	-Halve-2 ()			and the second second	1.5		-	Sector Sector

Рис. 2.4. Табличка Microsoft Excel с заданием аргумента функции МОБР

3) операцию вычисления обратной матрицы завершить одновременным нажатием трёх клавиш клавиатуры Ctrl + Shift + Enter (рис. 2.5).

3	Lofin II:	ionen Bi	а встати	иа Фор	Hat Copen	к Данны	т <u>О</u> кна (Экрапка -
9	Anal Ca	4	- 10	- *	K Y I	E # 31	通いなら	田-
	E1	- The second	/# (=MO	6P(A1:0)4)}			
E.	A	B	C	D	E		G	STATISTICS.
3	24	6	-5	5	0,043093	-0.00664	0.00653	+0.01392
2	1	12	0	3	800415	0.091335	0.002733	001969
3	3	10	-22	1	0,004092	0,039014	E-0.04674	0.00706
400	0	5	-2	13	0,00275	-0,02913	OTOTA	0.023411
4 4	P HI The	T1 / DHCT2	(DHETE)	STREET.	CAR AND	- 0.8 Str	11-7,8 (2.5)	1555.00

Рис. 2.5. Табличка Microsoft Excel с вычисленной обратной матрицей

Для получения решения системы нужно умножить полученную обратную матрицу на столбец свободных членов. Для этого заносим в столбец Ј таблицы Microsoft Excel значения свободного столбца системы (рис. 2.6).

	licrosol	t Exce	I - Kin	ira1	and the second		State State		1		
·@)	<u>Файл</u>	Пра	ака <u>Б</u>	Зна	9ст <u>а</u> вка 9	Рормат Се	рвис Дан	ные <u>О</u> кно		вка	_ a ×
		rial Cyr	all		- 10 -	жкч		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	.00 ₽,0		8- 闇
1	J4			fs.	-13		and the second second second	Auguer to so a course	Distancional Proc		Concession and
	A	B	C	D	E	F	G	H	12	J	k
1	24	6	-5	5	0,043093	-0,00864	-0,00853	-0,01392		. 6	1000
2	1	12	0	3	-0,00415	0,091335	0,002733	-0,01969		-3	
3	3	10	-22	1	0,004092	0,039014	-0,04574	-0,00706		8	
4	0	5	-2	13	0,002225	-0,02913	-0,00809	0,083411		-13	
14 4	A H	Лист1	Лист	2/1	ист3 /		11	Weeked (27	a ser la se	1	ान
Foro	80 - 1				COL SECTION						- 1

Рис.2.6. Табличка Microsoft Excel с занесёнными в столбец Ј значениями столбца свободных членов

Для получения искомого решения нужно перемножить обратную матрицу, расположенную в диапазоне ячеек E1:H4 на столбец свободных членов, записанный в диапазоне ячеек J1:J4. Для вычисления произведения двух матриц (столбец в данном случае пред- ставляет собой вырожденную матрицу, содержащую один столбец) можно применить функцию МУМНОЖ.

Решение опять выполняется в три этапа (выделение диапазона ячеек L1:L4 под результат действия функции (вычисление неизвестных x1, x2, x3, x4), вызов функции (рис. 2.3) и задание аргументов (рис. 2.7), после чего - одновременное нажатие клавиш клавиатуры Ctrl, Shift, Enter). В выделенном диапазоне ячеек появится вычисленное решение (рис. 2.8).

enure	H Excut-X	amra1	ER STATE	the state	125	ALART LASE	STR. MAIN	(n) ×
Post	т Провка	Вил Вст	ока Фор	мат Серем			Crosser a	A X
	Infail Cyr	A PROVIDE N	10 -1 ×	X 4 8		- 100 100 1 +	AT AS VICT	- A - E
NMHD	* - >	(V#3=b	УМНОЖЛ	1:14.11.14	1	enter (estato)	10.841 ED	·
D	E	HO FAR	G	H	1000	I K	19 States	1 × / M
5	0,043093	-0,00864	-0,00853	-0,01392		6x1	4.11.14)	A designed
3	-0,00415	0,091335	0,002733	-0,01969		-312	LOSSCOM	1
1	0,004092	0,039014	-0,04574	-0,00706		81x3	T-Water	1
13	0,002225	-0,02913	-0,00809	0,083411		-13 x4	120日日本日日	1
-		Maccust	1.114	-			{0,043092556	578983
115		Maccim2	1:34			<u>N</u> -	{6:-3:8:-13}	647
TE.		Carly Str					10, 39726723	276298:-0
щает	пронзведен	но ватена (н	andwater strate	ятся в масси	bax)	1.2	ni Sector de Maria	
		Maccuir2 r	en oj feston		an Ma	KCHEDE, KOTOD	eat dolowing an	NOTE TO NO
and the	112.05	New Car	екло сталби	DB, YTO H BTO	PON.			a lace
	ALANCA PL TO			The Contraction		CHOICE AND INCOME	TRACT	- Hartford
	9 esi 9 esi 10 13 13 10 14 13 10 14 13 10 14 14 15 15 15 16 16 16 16 16 16 16 16 16 16	Столон Essent 2 Фейн Провиха Ален Су- ленож • • • 0 E 5 0,043093 3 -0,00415 1 0,004092 13 0,002225 Сенть Функции ОЖ	Control Escol = Smmol Soin Провика Вик Вот Mini Cur D E F 5 0,043093 -0,00964 3 -0,00415 0,091335 1 0,004092 0,039014 13 0,002225 -0,02913 14 0,002225 -0,02913 Control Operation Maccine E Maccine E Maccine 2 1 Maccine 2 1 Maccine 2 1	Вили Вазов Ехинтол Феліл Проежа Вих Волдека Фор Долека Вих Фор Долека Фор Долека Вих Фор	Вил. Волувка Форенал Суренал Феліл Довека Вил. Волувка Форенал Суренал Алан С		Вилини Basele Xmmol Франка Вика Волдекса Форенат Сдренс Динения Динения По Ж. А. Ч. По К. А. Ч. По К. А. Ч. D E G. H. J. J. 0.004093 0.0091335 0.002733 0.01392 G. K.1 J. 0.004092 0.039014 0.04574 0.00706 B. X3 J. 0.002225 0.02913 0.00809 0.083411	Вили Провика Вик Вотдека Форенат Сдренк Диненая Джио Провика По жи Ч По жи Ч

Рис. 2.7. Окно функции МУМНОЖ с заданными аргументами

副ロ	Anal D	Name and Parket	вст <u>а</u> се.а	Pop <u>H</u> at	Сервыс <u>Д</u> а і ще жи	aretas Se S	Qioro Copa	exa = 6
00	L1		E (=MYMH	OX(E1 H4;	J1:J4)}	記用	11 100 450 L	S . 64 -
尚	E	F	G	H	O FRANKERS	NIK.	States Prover States	M
動員	0,043093	-0,00864	-0,00853	-0,01392	6	x1	0.397267	Contraction of the
2()	-0,00415	0,091335	0,002733	-0,01969	-3	x2	-0.02102	
6	0,004092	0,039014	-0,04574	-0,00706	8	x3	0.3667	
	0,002225	-0,02913	-0,00809	0,083411	-13	x4	AL D4832	
1	P H / Ther	1 /Berz	Beil	ACCESSION N	DEDUCTION AND INCOME.	Name:	In shirt of the local	in the second se

Рис. 2.8. Фрагмент таблички Microsoft Excel с результатом действия функции МУМНОЖ

Полученное решение нужно проверить, т.е. убедиться, что при подстановке найденных значений неизвестных уравнения обращаются в тождество. Умножим матрицу коэффициентов системы (диапазон A1:D4) на диапазон ячеек, содержащий полученное решение - L1:E4 (рис. 2.9).,

31	⊕añn 🗊	аока Вна	Вставка	中 operat	Серенс Д		_⊇кно _Спра	вка – 🖑 🤇
a	Arial Cy	N.	- 10 -	Ж.К	王 王 王	夏 6	日常端山	1 - Or - 1
auses.	M1		E (=MYMH	OX(A1:D4	(L1:L4)}			
55	E	Final	G	H	1 1	EK	E	M
	0,043093	-0,00864	-0,00853	-0,01392	6	×1	0,397267	6 1
2	-0.00415	0,091335	0,002733	-0,01969	-3	x2	-0,02102	The states of the
3	0.004092	0,039014	-0,04574	-0,00706	8	жЗ	-0,36667	B
4	0,002225	-0,02913	-0,00809	0,063411	-13	×4	-1,04832	13
1	P. HA DAC	r1 /Deriz	Писта / П	1000	1.	2003	MARCH 1	1.11
ort	eo	12116/11	ALL SHOW	Cymnaw-2				

Рис. 2.9. Фрагмент листа Microsoft Excel с проверкой полученного решения

Совпадение значений в столбцах Ј и М свидетельствует о правильности найденного решения.

2 способ. Заполняем диапазон ячеек Al:D4 Microsoft Excel матрицей коэффициентов перед неизвестными системы (рис. 2.1). Применяем функцию МОПРЕД для нахождения определителя матрицы коэффициентов системы (рис. 2.10).

2	Ania	al Cyr			10 - 🕱	КЧI	日春湯	··· 00, 00, 臣	E	+ 31	*
	B6	balks W		s =1	ИОПРЕД(А	1:D4)					_
100	A	8	CI	D	E	F.	G	to H	1	J	215F
1	24	6	-5	5	0,043093	-0,00864	-0,00853	-0,01392		6	x1
2	1	12	0	3	-0,00415	0,091335	0,002733	-0,01969		-3	x2
1	3	10	-22	1	0,004092	0,039014	-0,04574	-0,00706		8	xЗ
	0	5	-2	13	0,002225	-0,02913	-0,00909	0,083411		-13	x4
5											
	onnen	-72820									

Рис. 2.10. Вычисление определителя

Для вычисления неизвестных хь х2, х3, х4 вычисляем дополнительные определители. Формируем матрицы, определители которых нужно вычислить. Они содержат столбец свободных членов и коэффициенты матрицы системы (рис. 2.11).

J	A S	nal Cyr	CONTINE	in the	10 -	R K S			周 1	. 49		5 . A
	K14	142	1.53	fr.	and and and a	S GTLAP (INT	to ji ittaan		CON UN	0.04.1	habed of the second	
2	A	8	0	D.	HE I	E.S.	G	S. (H) (1	TRAC	aut i	K	100 1000
i	24	6	-5	-5	0,0431	-0,0096	-0,0085	-0,0139		6	a1	0,3973
1	1	12	- 0	3	-0,0041	0,0913	0,0027	-0,0197		E	x2	-0,021
	3	10	-22	1	0,0041	0,039	-0,0457	-0,0071		8	xЗ	-0,367
	0	5	-2	13	0,0022	-0,0291	-0,0081	0,08341		-13	x4	-1.048
	onpeg.	-72820		6	6	-5	5		24	6	-5	5
đ				-3	12	0	3		1	-3	0	3
				8	10	-22	1		3	8	-22	1
				-13	5	-2	13		0	-13	-2	13
<u>ii</u>												-4.5
		24	6	6	5		24	6	-5	Б	-	
9		1	12	-3	3		1	12	0	.3		
ł		3	10	8	1		3	18	-22	8	1	
		0	5	-13	13		0	5	.2	.13	_	

Рис. 2.11. Этап решения вторым способом

Вычисляем определители вспомогательных матриц и вычисляем решение, как отношение определителей вспомогательных матриц и определителя системы (рис. 2.12). Найденные решения совпадают.

ä	A	ial Cyr	eressen al.	CONCEPT -	10 -1 28	K H	唐 署	湯 国		,00 F	H - 0	- A
81273	E19			15	Same Contraction of the second	KUNANUSTU	W FERSORE	Still Store State	C. Martine		Con Collection plan	
	A	B	C	D	E	F	G	H	1	1-1	KI	LI
6	опред.	-72820		6	6	-5	5		24	6	-5	5
7				-3	12	0	3		1	-3	0	3
8		1		8	10	-22	1		3	8	-22	1
9				-13	5	-2	13	and the second s	0	-13	-2	13
10												
11		24	6	6	5		24	6	-5	6		
12		1	12	-3	3		1	12	0	-3		
13	-	3	10	8	1	04740	3	10	-22	8		
14		0	5	-13	13		D	5	-2	-13		
15												
16	x1=	0,3973										
17	x2=	-0,021					1					
18	х3=	-0,367									t.	
19	x4=	-1.048		1					1	1		

Рис. 2.12. Решение вторым способом

Теперь можно проверить справедливость утверждения из задания. Для проверки некоторого условия (или условий) в табличном процессоре Microsoft Excel используется функция ЕСЛИ (категория функций «логические»). Функция имеет три аргумента:

- условие (условия), которые надо проверить;
- предписание, что делать, если проверяемое условие истинно;
- предписание, что делать, если проверяемое условие ложно.

В решаемой задаче требуется проверить справедливость условия $\sqrt[3]{x_1 + x_2 + x_3 + x_4} > 2.68$. Значит, первым аргументом функции ЕСЛИ будет записано проверяемое условие. Вторым аргументом будет фраза «утверждение справедливо», третьим аргументом - фраза «утверждение несправедливо» (рис. 2.13). Формула с функцией ЕСЛИ отображается в строке формул на рис. 2.13.

Σ	- 22 5	Arial Cur		- Contraction	- 10 -	W				00		
	EIG	The second	1200	(c) .	New Party	A 4 3		亭 署 注	1 200		- 01 -	<u>A</u> -
6.3	A	0	~		сли(АВ	S(B16+B1	7+B18+	B19)^0,33	<2,68;	утверж	дение	Constant Property
	0	70000	6	cu cu	раведли	зо ; утвер	ждение	несправе	дливо")		
	опред.	-12020		6	6	-5	5		24	6	-5	5
X				-3	12	0	3		1	-3	0	З
	10000			8	10	-22	1		3	8	-22	1
				-13	5	-2	13	0.57	0	-13	-2	13
	Sec. 1	24	6	6	5		24	6	-5	6		
		1	12	-3	3		1	12	0	-3		
		3	10	8	1		3	10	-22	8		77 - 11 M. P.
1001		0	5	-13	13		0	5	-2	-13		
										10		
6	x1=	0,3973		1	утверждение справедливо							
T-SAL	x2=	-0,021	1		and the second se	and the second star from the second						
	x3=	-0,367		1.1.2	the train of					and the second s		
1.100	x4=	-1,048										
靡	AN	Ducys /n	200	1 rt	1	Tables and services	and the second second	-	www.e.e.e.			

Рис. 2.12. Проверка утверждения

ВАРИАНТЫ РАСЧЕТНО-ГРАФИЧЕСКОГО ЗАДАНИЯ

Требования по оформлению работы:

• Отчет о выполнении РГЗ предваряется титульным листом, содержащим название работы, номер выполняемого варианта, фамилий автора и преподавателя, год выполнения задания; далее располагаются страницы, содержащие:

Условие выполняемой задачи;

• Решение системы линейных алгебраических уравнений в табличном процессоре Microsoft Excel любым из известных способов; проверка полученного решения;

Проверка справедливости проверяемого условия;

Ответ.

Таблички с решением вставляются в отчет в режимах отображения формул и чисел.

Вариант 1

Проверить справедливость утверждения $x_1 + 2x_2 - 8x_3 + x_4 < 30$, где x_1, x_2x_3, x_4 - решение системы линейных алгебраических уравнений

$$\begin{cases} 37 \cdot x_1 - 7 \cdot x_2 + 2 \cdot x_3 + 2 \cdot x_4 = 39 \\ 17 \cdot x_1 - 160 \cdot x_2 + 7 \cdot x_3 + 9 \cdot x_4 = 91 \\ -x_1 + 2 \cdot x_2 + 42 \cdot x_3 + 4 \cdot x_4 = 14 \\ 2 \cdot x_1 + x_3 + 30 \cdot x_4 = 19 \end{cases}$$

Вариант 2

Проверить справедливость утверждения $x_1 > 0$, $x_2 < 0$, $x_3 > 0$, $x_4 > 0$, где x_1 , $x_2 x_3$, x_4 - решение системы линейных алгебраических уравнений

$$\begin{cases} -0.76 \cdot x_1 + 0.21 \cdot x_2 + 0.06 \cdot x_3 - 0.34 \cdot x_4 = -1.42 \\ 0.05 \cdot x_1 - x_2 + 0.32 \cdot x_3 + 0.12 \cdot x_4 = 0.57 \\ 0.35 \cdot x_1 - 0.27 \cdot x_2 - x_3 - 0.05 \cdot x_4 = -0.68 \\ 0.12 \cdot x_1 - 0.43 \cdot x_2 + 0.04 \cdot x_3 - 1.21 \cdot x_4 = 2.14 \end{cases}$$

Вариант 3

Проверить справедливость утверждения $(x_1 + x_2 + x_3 + x_4)^2 > 45$, где x_1 , $x_2 x_3$, x_4 - решение системы линейных алгебраических уравнений

$$\begin{cases} 20 \cdot x_1 + 7 \cdot x_2 - 7 \cdot x_3 + 3 \cdot x_4 = 1 \\ 3 \cdot x_1 + 40 \cdot x_2 - 8 \cdot x_3 + x_4 = -7 \\ x_1 + 3 \cdot x_2 - 32 \cdot x_3 + 4 \cdot x_4 = 5 \\ -2 \cdot x_1 + x_2 - 17 \cdot x_3 + 50 \cdot x_4 = 23 \end{cases}$$

Вариант 4

Проверить справедливость утверждения x₁ - x₂ > x₃ + x₄, где x₁, x₂ x₃, x₄ – решение системы линейных алгебраических уравнений

 $\begin{cases} -x_1 + 0.52 \cdot x_2 + 0.08 \cdot x_3 + 0.13 \cdot x_4 = 0.22 \\ 0.07 \cdot x_1 - 1.38 \cdot x_2 - 0.05 \cdot x_3 + 0.41 \cdot x_4 = -1.8 \\ 0.04 \cdot x_1 + 0.42 \cdot x_2 - 0.89 \cdot x_3 - 0.07 \cdot x_4 = 1.3 \\ 0.17 \cdot x_1 + 0.18 \cdot x_2 - 0.13 \cdot x_3 - 0.81 \cdot x_4 = -0.33 \end{cases}$

Вариант 5

Проверить справедливость утверждения x1 + x2 + x3 + x4 >10, где x1, x2 x3, x4 - решение

системы линейных алгебраических уравнений

 $\begin{cases} 72 \cdot x_1 + 6 \cdot x_2 - 5 \cdot x_3 + 5 \cdot x_4 = 6 \\ x_1 + 12 \cdot x_2 + 3 \cdot x_4 = 6 \\ 3 \cdot x_1 + 12 \cdot x_2 - 48 \cdot x_3 + x_4 = 4 \\ x_2 - 2 \cdot x_3 - 8 \cdot x_4 = -4 \end{cases}$

Вариант 6

Проверить справедливость утверждения x₁ > x₂ • x₃ • x₄, где x₁, x₂ x₃, x₄ - решение системы линейных алгебраических уравнений

 $\begin{cases} -0,86 \cdot x_1 + 0,23 \cdot x_2 + 0,18 \cdot x_3 + 0,17 \cdot x_4 = 1,42 \\ 0,12 \cdot x_1 - 1,14 \cdot x_2 + 0,08 \cdot x_3 + 0,09 \cdot x_4 = 0,83 \\ 0,16 \cdot x_1 + 0,24 \cdot x_2 - x_3 - 0,35 \cdot x_4 = -1,21 \\ 0,23 \cdot x_1 - 0,08 \cdot x_2 + 0,05 \cdot x_3 - 0,75 \cdot x_4 = -0,65 \end{cases}$

Вариант 7

Проверить справедливость утверждения $x_1 + x_2 > (x_3 - x_4)^3$, где x_1 , $x_2 x_3$, x_4 - решение системы линейных алгебраических уравнений

 $\begin{cases} 15 \cdot x_1 - 2 \cdot x_2 - 8 \cdot x_4 = -6 \\ 5 \cdot x_1 + 42 \cdot x_2 - x_3 + x_4 = -9 \\ 6 \cdot x_1 + x_2 + 22 \cdot x_3 - 3 \cdot x_4 = 1 \\ 2 \cdot x_1 + 2 \cdot x_3 - 13 \cdot x_4 = -13 \end{cases}$

Вариант 8.

Проверить справедливость утверждения x₁·x₂·x₃·x₄ ≥ 0, где x₁, x₂ x₃, x₄ - решение системы линейных алгебраических уравнений

 $\begin{cases} 15 \cdot x_1 + 4 \cdot x_2 + x_3 + 3 \cdot x_4 = -1 \\ 17 \cdot x_1 + 52 \cdot x_2 + 8 \cdot x_3 + 7 \cdot x_4 = 0 \\ x_1 + 3 \cdot x_2 + 110 \cdot x_3 + 7 \cdot x_4 = 8 \\ -2 \cdot x_1 + x_2 + 3 \cdot x_3 + 22 \cdot x_4 = 3 \end{cases}$

Вариант 9.

Проверить справедливость утверждения x₁·x₂·x₃·x₄ < 29, где x₁, x₂ x₃, x₄ - решение системы линейных алгебраических уравнений

$$\begin{cases} 10 \cdot x_1 - 2 \cdot x_2 + 2 \cdot x_3 = 13 \\ 29 \cdot x_2 + 5 \cdot x_3 + 5 \cdot x_4 = 29 \\ 7 \cdot x_1 + 5 \cdot x_2 + 40 \cdot x_3 + 9 \cdot x_4 = 50 \\ 3 \cdot x_1 + 2 \cdot x_2 + x_3 + 34 \cdot x_4 = 17 \end{cases}$$

Вариант 10.

Проверить справедливость утверждения $x_1 + x_2 > x_3 - x_4$, где x_1 , $x_2 x_3$, x_4 - решение системы линейных алгебраических уравнений

 $\begin{cases} 16 \cdot x_1 - 2 \cdot x_2 - 8 \cdot x_4 = 16 \\ 5 \cdot x_1 + 42 \cdot x_2 - x_3 - 26 \cdot x_4 = -1 \\ 6 \cdot x_1 + x_2 + 22 \cdot x_3 - 4 \cdot x_4 = 19 \\ 2 \cdot x_1 + x_3 + 12 \cdot x_4 = 9 \end{cases}$

Вариант 11.

Проверить справедливость утверждения (x₁·x₂·x₃·x₄)³ ≥ 249, где x₁, x₂ x₃, x₄ - решение системы линейных алгебраических уравнений

 $\begin{cases} 24 \cdot x_1 - 4 \cdot x_2 - 3 \cdot x_3 + 3 \cdot x_4 = -24 \\ 2 \cdot x_1 + 27 \cdot x_2 + 8 \cdot x_3 - x_4 = 43 \\ 3 \cdot x_1 + 14 \cdot x_2 + 35 \cdot x_3 = 29 \\ x_1 + 5 \cdot x_2 + x_3 + 28 \cdot x_4 = 7 \end{cases}$

Вариант 12.

Проверить справедливость утверждения $x_1 > x_2 > x_3 > x_4$, где x_1, x_2, x_3, x_4 - решение системы линейных алгебраических уравнений

 $\begin{cases} 20 \cdot x_1 - x_2 - 3 \cdot x_3 - 5 \cdot x_4 = 15 \\ 2 \cdot x_1 + 18 \cdot x_2 + 5 \cdot x_4 = 83 \\ x_1 + 5 \cdot x_2 + 32 \cdot x_3 + 6 \cdot x_4 = 18 \\ 3 \cdot x_2 + x_3 + 12 \cdot x_4 = 8 \end{cases}$

Вариант 13.

Проверить справедливость утверждения $(x_1 - x_2 + x_3 - x_4)^3 \ge 0$, где x_1 , $x_2 x_3$, x_4 - решение системы линейных алгебраических уравнений

 $\begin{cases} 70 \cdot x_1 + 2 \cdot x_2 - 4 \cdot x_3 + 2 \cdot x_4 = 35\\ 5 \cdot x_1 - 70 \cdot x_2 + 9 \cdot x_3 - 10 \cdot x_4 = 43\\ 2 \cdot x_1 + 10 \cdot x_3 = -6\\ x_2 + 3 \cdot x_3 + 14 \cdot x_4 = 52 \end{cases}$

Вариант 14.

Проверить справедливость утверждения $x_1 < 0$, $x_2 > 0$, $x_3 \cdot x_4 \ge 0$, где x_1 , $x_2 x_3$, x_4 - решение системы линейных алгебраических уравнений

$$\begin{vmatrix} -x_1 + 0, 17 \cdot x_2 - 0, 33 \cdot x_3 + 0, 18 \cdot x_4 = 1, 2 \\ -0, 82 \cdot x_2 + 0, 43 \cdot x_3 - 0, 08 \cdot x_4 = -0, 33 \\ 0, 22 \cdot x_1 + 0, 18 \cdot x_2 - 0, 79 \cdot x_3 + 0, 07 \cdot x_4 = -0, 48 \\ 0, 08 \cdot x_1 + 0, 07 \cdot x_2 + 0, 21 \cdot x_4 - 0, 96 \cdot x_4 = 1, 22 \end{vmatrix}$$

Вариант 15.

Проверить справедливость утверждения $x_1 \cdot x_2 < 0$, $x_3 \cdot x_4 \ge 0$, где x_1 , $x_2 x_3$, x_4 - решение системы линейных алгебраических уравнений

 $\begin{cases} -0.68 \cdot x_1 - 0.23 \cdot x_2 + 0.11 \cdot x_3 - 0.06 \cdot x_4 = -0.67 \\ 0.18 \cdot x_1 - 0.88 \cdot x_2 + 0.12 \cdot x_3 - 0.33 \cdot x_4 = 0.88 \\ 0.12 \cdot x_1 + 0.32 \cdot x_2 - 1.05 \cdot x_3 + 0.07 \cdot x_4 = 0.18 \\ 0.05 \cdot x_1 - 0.11 \cdot x_2 + 0.09 \cdot x_3 - 1.124 \cdot x_4 = 1.44 \end{cases}$

Вариант 16.

Проверить справедливость утверждения $x_1 > 0$, $x_2 \cdot x_3 < 0$, $x_4 \ge 0$, где x_1 , $x_2 x_3$, x_4 - решение системы линейных алгебраических уравнений

$$\begin{cases} -0.76 \cdot x_1 + 0.21 \cdot x_2 + 0.06 \cdot x_3 - 0.34 \cdot x_4 = -1.42 \\ 0.05 \cdot x_1 - x_2 + 0.32 \cdot x_3 + 0.12 \cdot x_4 = 0.57 \\ 0.35 \cdot x_1 - 0.27 \cdot x_2 - x_3 - 0.05 \cdot x_4 = -0.68 \\ 0.12 \cdot x_1 - 0.43 \cdot x_2 + 0.04 \cdot x_3 - 0.21 \cdot x_4 = 2.14 \end{cases}$$

Вариант 17.

Проверить справедливость утверждения $(x_1 - x_2)^2 \cdot x_3 \cdot x_4 \le 45$, где x_1, x_2, x_3, x_4 - решение системы линейных алгебраических уравнений

 $\begin{cases} -0.87 \cdot x_1 + 0.22 \cdot x_2 - 0.33 \cdot x_3 + 0.07 \cdot x_4 = -0.11 \\ -0.55 \cdot x_2 - 0.23 \cdot x_3 + 0.07 \cdot x_4 = 0.33 \\ 0.11 \cdot x_1 - 1.08 \cdot x_3 + 0.18 \cdot x_4 = -0.85 \\ 0.08 \cdot x_1 + 0.09 \cdot x_2 + 0.33 \cdot x_3 - 0.79 \cdot x_4 = 1.7 \end{cases}$