Цель работы – применение интеграла Дюамеля для определения реакций на кусочнонепрерывные сигналы, представление импульсного напряжения как совокупности непрерывных сигналов, нахождение реакции в виде наложения частных реакций на отдельные составляющие импульсного сигнала.

Введение

Рассмотрим значения непрерывного сигнал e(t) в дискретные моменты времени $t_k = kt_d$, где t_d - интервал дискретизации. Последовательность $e_k(t_k)$ носит название решетчатой функции.

При заданной решетчатой функции можно приближенно восстановить непрерывный сигнал, используя различные виды интерполяции, отличающимися способами соединения смежных точек, определяемых значениями решетчатых функций e_k и e_{k+1} . Различают ступенчатую, линейную, параболическую и другие виды интерполяции. При ступенчатой интерполяции сигнал представляется в виде наложения ступенчатых функций задержанных во времени $e_a(t) = E_0\delta_1(t) + \Delta E_1\delta_1(t-t_d) + \Delta E_2\delta_1(t-2t_d) + \Delta E_3\delta_1(t-3t_d) + \Delta E_4\delta_1(t-4t_d) + \dots$ (1)

3десь $\delta_1(t)$ - функция Хевисайда, $E_0 = e(0)$ - значение функции в нуле, $\Delta E_k = e_k - e_{k-1}$ приращение решетчатой функции в момент t_k .

Из рисунка 1 видно, что при уменьшении интервала дискретизации приближенное описание сигнала $e_a(t)$ стремится к непрерывной форме исходного сигнала e(t).

Рис.1.Примеры решетчатых функций, ступенчатой и линейной интерполяции при различных значениях интервала дискретизации. Число выборок в пределах периода составляет N=12 – a), N=20 - б) и N=80 – в).

Переходной характеристикой $h_1(t)$ называется реакция цепи на действие единичного ступенчатого сигнала $\delta_1(t)$. Поскольку входной сигнал представлен совокупностью ступенчатых функций, тогда в соответствии с принципом суперпозиции реакцию на действие такого сигнала $e_a(t)$ можно представить как наложение переходных характеристик с весом, равным ступенчатому приращению ΔE_k $u_a(t) = E_0 h_1(t) + \sum_i \Delta E_k \delta_1(t - kt_d) \cdot h_1(t - kt_d)$

$$(t) = E_0 h_1(t) + \sum_{k=1} \Delta E_k \delta_1(t - kt_d) \cdot h_1(t - kt_d)$$
(2)

При малых значениях величины t_d приращение ΔE_k можно выразить через производную от функции e(t) в момент $t = t_k$

$$\Delta E_k = e'(t_k) \cdot t_d$$

В предельном случае $t_d \to d\eta$, $t_k = kt_d \to \eta$ сумма (2) переходит в интеграл, который носит название интеграла Дюамбля $u(t) = e(0) \cdot h_1(t) + \int_0^{\infty} e'(\eta) \cdot h_1(t-\eta) d\eta$ (3)

Реакция на непрерывные сигналы

Линейный сигнал

Определим напряжение емкости $u_{c}(t)$ последовательной *RC* цепи (рис. 1-а) при действии на входе линейно напряжения $e(t) = k_{t} \cdot t$ с постоянной скоростью нарастания $e'(t) = k_{t} = const$

Переходная характеристика цепи относительно напряжения $u_C(t)$ имеет вид $h_1(t) = 1 - \exp(-\alpha \cdot t)$, $\alpha = 1/\tau$, $\tau = RC$ (4)

где α - коэффициент затухания, τ - временя релаксации.

Вычислим реакцию по формуле $\int_{0}^{t} e^{a\eta} d\eta = k_t (t - \tau + \tau \cdot e^{-t/\tau}), \quad \tau = 1/\alpha$ $u(t) = \int_{0}^{t} k_t [1 - e^{-a(\tau-\eta)} d\eta = k_t \cdot [t - e^{-t/\tau}], \quad t = 1/\alpha$ $u(t) = k_t \cdot h_2(t), \quad h_2(t) = \tau [\hat{t} - (1 - e^{-\hat{t}})], \quad \hat{t} = t/\tau$

Здесь $h_2(t)$ - реакция цепи на линейный сигнал с единичным угловым коэффициентом $k_t = 1$

Графики переходной характеристики, входного и выходного сигнала при параметрах цепи R = 1, C = 1и угловом коэффициенте $k_i = 1$ показаны на рис.2-а и 2-б.

Рис. 2. Схема цепи – а), переходная характеристика – б) входной и выходной сигналы – в) Из графика видно, что после окончания переходного процесса $t \ge t_s, t_s = (3-5)\tau$

установившаяся реакция запаздывает относительно входного сигнала на время $t_d = \tau$: $u(t) = k_t(t-\tau)$ $t \succ t_s$

Реакция цепи на экспоненциальный сигнал.

Найдем реакцию рассмотренной выше цепи с характеристикой $h_1(t) = 1 - e^{\alpha_h t}$ в случае экспоненциального воздействия $e(t) = E \cdot \exp(-\alpha_e t)$, для которого $e(0) = E_{\rm H}$ $e'(t) = -\alpha_e \cdot E \cdot \exp(-\alpha_e t)$

Запишем интеграл Дюамеля

$$u(t) = E(1 - \exp(-\alpha_h \cdot t) - \alpha_e \cdot \int_0^t \exp(-\alpha_e t) \cdot [1 - \exp(-\alpha_h \cdot (t - \eta))] d\eta$$
(5)

$$u(t) = \frac{\prod_{k=1}^{n} \alpha_{k} - \alpha_{e}}{\alpha_{h} - \alpha_{e}} \cdot \left[\exp(-\alpha_{e}t) - \exp(-\alpha_{h} \cdot t) \right]$$
(6)

Реакция зависит от соотношения между коэффициентом затухания свободных составляющих переходного процесса α_h и коэффициентом затухания экспоненциального импульса α_e . На рисунке 3-а показано формирование реакции при значении коэффициентов $\alpha_h = 0.5$ и $\alpha_e = 1$. Графики напряжений емкости при значении $\alpha_h = 0.5$ и разных значениях $\alpha_e = 0.45, 1, 2$ даны на рис. 3-б.

Рис.3. Входной сигнал, переходная характеристика и реакция цепи а) и влияние постоянной затухания импульсного сигнала на форму реакции – б)

Определение реакций на кусочно-непрерывные сигналы

На практике часто встречаются задачи определения реакций цепи на кусочно-постоянные, кусочно-линейные, кусочно-гармонические и другие виды сигналов. Примеры таких сигналов показаны на рис.4

Рис. 4. Примеры кусочно-гармонического сигнала – а) и кусочно-линейного сигнала б).

На участках непрерывности такие сигналы описываются разными функциями. Например, сигнал, показанный на рис. 4/а записывается для трех областей следующим образом

$$e(t) = \begin{vmatrix} 2E_m \cdot \cos[2\pi(t/T - 0.25)] & \text{if } T/4 \le t \le T/2 \\ 0, & \text{if } t \ge T/2 \end{aligned}$$
(7)

В рассмотренном примере длительность сигнала $t_p = 2$, период гармонических функций T = 4, амплитуд $k E_m = f A$. $0 \le t \le t_p / 4$ Форма сигнала, показанного рна рис*i*f4-6 t_p 3/анксыя асрся для четырех областей $t \ge 0$ $e(t) = \begin{bmatrix} -E_m + k \cdot (t - 3t_p / 4), & if & 3t_p / 4 \le t \le t_p \end{bmatrix}$

$$0, \quad if \quad t \ge t_p \tag{8}$$

где t_p - длительность импульса, E_m - амплитуда, $k = 4E_m/t_p$ - угловой коэффициент. Интеграл Дюамеля имеет разную форму в зависимости от области, для которой он

записывается. Вычислим напряжение резистора $u_R(t)$ в последовательной *CR* – цепи (рис.5), на вход которой подается импульс напряжения (рис. 4а), заданный формулой (8).

Рис.5 Схема цепи во время действия импульсного напряжения – а) и во время паузы – б)

Переходная характеристика h_1 и производные e_{d1} , e_{d2} от напряжения e(t) на различных временных участках имеют вид 2π 2π

$$h_{1}(t) = \exp(-\alpha \cdot t), \qquad e_{d1}(t) = e_{1}'(t) = \frac{2\pi}{T} \cdot \cos(\frac{2\pi}{T}t)$$

$$e_{d2}(t) = e_{2}'(t) = -2\frac{2\pi}{T} \cdot \sin(\frac{2\pi}{T}t)$$
(9)

Запишем интеграл Дюамеля для каждой из трех областей

$$\mathbf{v}(\mathbf{t}) \coloneqq \int_{0}^{t} \mathbf{e}_{1d}(\eta) \cdot \mathbf{h}_{1}(\mathbf{t} - \eta) \, d\eta \quad \text{if } 0 \le \mathbf{t} \le \frac{T}{4}$$

$$\begin{pmatrix} \mathbf{h}_{1}(\mathbf{t} - 1) + \int_{0}^{\frac{T}{4}} \mathbf{e}_{1d}(\eta) \cdot \mathbf{h}_{1}(\mathbf{t} - \eta) \, d\eta + \int_{\frac{T}{4}}^{t} \mathbf{e}_{2d}(\eta) \cdot \mathbf{h}_{1}(\mathbf{t} - \eta) \, d\eta \end{pmatrix} \quad \text{if } \frac{T}{4} \le \mathbf{t} \le \frac{T}{2}$$

$$\begin{pmatrix} \mathbf{h}_{1}(\mathbf{t} - 1) + \int_{0}^{\frac{T}{4}} \mathbf{e}_{1d}(\eta) \cdot \mathbf{h}_{1}(\mathbf{t} - \eta) \, d\eta + \int_{\frac{T}{4}}^{\frac{T}{2}} \mathbf{e}_{2d}(\eta) \cdot \mathbf{h}_{1}(\mathbf{t} - \eta) \, d\eta \end{pmatrix} \quad \text{if } \mathbf{t} \ge \frac{T}{2}$$

$$(10)$$

При записи интеграла Дюамеля на интервале $0.25T \le t \le 0.5T$ первое слагаемое учитывают скачок напряжения в момент t = T/4, второе слагаемое - влияние напряжения $e_1(t)$ первой части импульса.

После окончания действия импульса $t \ge T/2$ происходит разряд конденсатора через источник, который при равенстве нулю напряжения может быть представлен элементом КЗ, как показано на рис. 5-б. Энергия, запасенная в емкости, рассеивается в резисторе при протекании тока разряда в контуре C - SC - R. На рис. 6 показан график искомой реакции $u_R(t)$, полученный при следующих параметрах цепи и входного импульса $\alpha = 1$, T = 4, $E_m = 1$, $t_p = T/2 = 2$.

Рис.6. Напряжение на резисторе в последовательном *CR* – контуре при действии на входе цепи кусочногармонического импульса.

Нахождение реакции цепи посредством наложения частных реакций на элементарные составляющие входного сигнала.

Большинство встречающихся на практике импульсных сигналов можно разложить на непрерывные сигналы, которые включаются с запаздыванием в моменты времени, соответствующие границам областей определения кусочно-непрерывного сигнала.

Реакция цепи на прямоугольный импульс

Прямоугольный импульс $e^{(t)}$ длительностью t_p и амплитудой E_m можно представить как наложение двух ступенчатых напряжений, одно из которых подается в момент появления импульса $e_1(t) = E_m \cdot \delta_1(t)$, а второе напряжение $e_2(t) = -E_m \cdot \delta_1(t-t_p)$ подается с задержкой t_d , равной длительности импульса t_p . $e(t) = E_m \cdot [\delta_1(t) - \delta_1(t-t_p)]$ (11)

Найдем выходные реакции LR и RC четырехполюсников (рис. 7) с одинаковыми значениями времени релаксации $L_1/R_1 = R_2C_2 = \tau$

Рис.7. Резистивно-индуктивный – а) и резистивно-емкостный – б) четырехполюсники интегрирующего типа.

Переходная характеристика относительно напряжения на резисторе LR цепи и относительно напряжения емкости RC цепи имеет одинаковый вид

$$h_1(t) = 1 - \exp(-t/\tau)$$

Выходную реакцию u(t) можно представить как суперпозицию двух переходных характеристик с весом, равным амплитуде импульса E_m

$$u(t) = E_m \cdot [h_1(t) \cdot \delta_1(t) - h_1(t - t_p) \cdot \delta_1(t - t_p)]$$
(12)

На рисунке 8 показано формирование прямоугольного импульса длительностью $t_p = 1$ и амплитудой $E_m = 1$ помощью ступенчатых функций и форма реакций для различных времен релаксации: $\tau = 0.75$, $\tau = 0.1$ (рис 8-б) и $\tau = 2$ (рис. 8-в). Реакции получены при различных значениях времени релаксации: $\tau = 0.75$, $\tau = 0.1$ (рис 6-б) и $\tau = 2$ (рис. 6-в). а) б)

Рис.8. Формирование прямоугольного импульса – а) и реакций цепи при разных значениях времени релаксации.

Из осциллограмм следует, что форма реакции зависит от отношения длительности импульса к времени релаксации $t_p = t_p/\tau$. Если выполняется условие $t_p \succ \tau$, то форма реакции близка к форме входного сигнала. Это видно из сравнения осциллограмм напряжений $e(t)_{\rm H} u(t,\tau=0.1)_{\rm Ha}$ рис. 8-б, полученных для случая $t_p = 10$.

Если длительность импульса намного меньше времени релаксации $t_p \prec \tau$, то реакции в пределах длительности импульса близка к линейно нарастающему сигналу – интегралу от постоянной величины

$$u(t,\tau) = 1 - e^{-t/\tau} \approx 1 - (1 - t/\tau) = t/\tau , \quad 0 \le t \le t_p, \quad t_p \prec \prec \tau \\ E_m = 1, t_p = 1$$

Точное интегрирование прямоугольного импульса $L_m = 1, l_p = 1$ дает

$$\begin{aligned} u_{int}(t) = & t \text{ if } 0 \leq t \leq t_p \\ & 1 \text{ if } t > t_p \end{aligned}$$

Графики входного сигнала e(t), увеличенной в τ раз реакции цепи $u_m = \tau \cdot u(t, \tau)$ и осциллограмма выходного сигнала идеального интегратора $u_{int}(t)$ при времени релаксации $\tau = 20$ и длительности импульса $t_p = 1$ показаны на рисунке 9.

Из приведенных соотношений и графиков следует, что рассмотренные четырехполюсники могут работать в режиме неискажающего преобразования, если $t_p \succ \tau$, и приближенного интегрирования, если $t_p \prec \tau$.

Рис.9 Графики входного сигнала, реакции цепи и выходного сигнала идеального интегратора.

Реакция цепи на импульс треугольной формы

Представим симметричный сигнал треугольной формы с помощью линейных функций единичного наклона $\delta_2(t) = t \delta_1(t)$. $e(t) = k_l \cdot [\delta_2(t) - 2\delta_2(t - t_p/4) + 2\delta_2(t - 3t_p/4) - \delta_2(t - t_p)]$ (13)

где $k_l = 4E_m/t_p$ - угловой коэффициент, E_m, t_p - амплитуда и длительность импульса. Схема построения входного сигнала показана на рис. 10.

Рис.10. Формирование импульса треугольной формы с помощью линейных функций.

Найдем выходные реакции $RL_{\rm H}$ CR четырехполюсников (рис. 9) с одинаковыми значениями времени релаксации $L_1/R_1 = R_2C_2 = \tau$ и одинаковыми переходными характеристиками $h_1(t)$ и реакциями на линейную функцию единичного наклона $h_2(t)$: $h_1(t) = \exp(-t/\tau)$, $h_2(t) = 1 - \exp(-t/\tau)$ (14)

Рис.11. Резистивно-индуктивный – а) и резистивно-емкостный – б) четырехполюсники дифференцирующего типа.

Выходную реакцию u(t) представим как суперпозицию реакций на линейные сигналы $u(t) = k[h_2(t) - 2h_2(t - 0.25t_p) + 2h_2(t - 0.75t_p) - h_2(t - t_p)]$ (15)

Полная реакция и ее составляющие при параметрах $t_p = 1$ и $\tau = 0.25$ показаны на рис.10.

Рис.12. Формирование выходного сигнала в результате наложения частных реакций.

Форма реакции зависит от соотношения между временем релаксации τ и одного из интервалов кусочно-линейного изменения входного сигнала $t_l^{l} = t_p/4$, где t_p^{-} длительность импульса. При малых значениях времени релаксации форма реакции близка к производной от входного сигнала. На рис.11-а показана выходная реакция четырехполюсника при времени релаксации $\tau = 0.025$, длительности импульса $t_p^{t} = 1$ и времени $t_l = 0.25$. На том же рисунке показан входной сигнал и его производная

$$e_d = \frac{de(t)}{dt} = k_l \cdot [\delta_1(t) - 2\delta_1(t - 0.25) + 2\delta_1(t - 0.75) - \delta_1(t - 1)]$$

Рис.13. Входной и выходной сигнал четырехполюсника в режимах приближенного дифференцирования – а) и передачи сигнала с малыми искажениями – б).

При больших значениях времени релаксации форма выходного сигнала близка к форме входного сигнала. Это следует из рисунка 11-6, на котором показана реакция, полученная при следующих параметрах: $\tau = 2.5$, $t_p = 1$ и $t_l = 0.25$.

Задание

Задана резистивно-индуктивная цепь (рис.14) и ее вторичные параметры для установившегося режима синусоидального тока частотой $f = 50\Gamma u$ (таблица 1) $X_L = \omega L$ $tg \varphi = X_L/R$

Рис.14. Схема исследуемой цепи

Форма входного напряжения $e^{(t)}$ задана в виде осциллограмм, показанных на рис. 15. Задача состоит в нахождении входной реакции $i^{(t)}$ на действие импульсного напряжения $e^{(t)}$ двумя способами

- с помощью интеграла Дюамеля

- с помощью разложения входного сигнала на элементарные составляющие и определения полной реакции как суперпозиции частных реакций

Порядок выполнения работы

- 1. Пользуясь данными таблицы 1, найти первичные параметры цепи *R*, *L*
- 2. Найти переходную характеристику цепи $g_1(t)$ относительно тока

$$g_1(t) = i(t)$$
 if $e(t) = \delta_1(t)$

- 3. Пользуясь осциллограммами сигналов, записать форму входного напряжения в виде кусочно-непрерывной функции. Пример такой записи сигнала в среде *MathCad* дают формулы (7), (8).
- 4. Записать интеграл Дюамеля для выделенных участков непрерывности как это сделано в формуле (10). Используя графические средства *MathCad* построить на одном графике временные зависимости входного напряжения и тока цепи.
- 5. Разложить входной сигнал на элементарные составляющие ступенчатого, линейного или гармонического вида. Пример такой записи сигнала дается формулами (11), (13).
- 6. Найти реакции на элементарные сигналы классическим и операторным методом. В классическом методе переходной процесс рассматривается как наложение вынужденной и свободной составляющей

$$i(t) = i_t(t) + i_s(t)$$

В операторном методе ток i(t) находится как оригинал операторного тока I(s), который вычисляется через изображение входного напряжения E(s) и операторную проводимость Y(s)

$$i(t) = L^{-1}(I(s)) \qquad I(s) = E(s) \cdot Y(s)$$

Нахождение оригинала производится с помощью разложения Хевисайда

- 7. Записать полную реакцию как суперпозицию частных реакций с учетом их смещения во времени как это сделано в формулах (12), (15).
- 8. Построить на одном графике полную реакцию и ее составляющие. Объяснить отличие форм напряжения и тока. Как следует изменить параметры цепи или параметры сигнала, чтобы форма реакции была близка к форме входного напряжения.

Таблица 1

N⁰	X_L, OM		N⁰	X_L, O_M		
1	0.5	3.5	16	0.6	9	
2	0.5	3	17	0.65	9.5	
3	0.6	3	18	0.7	10	
4	0.6	3.5	19	0.7	9.5	
5	0.55	4	20	0.75	3.5	
6	0.55	4.5	21	0.75	4	
7	0.65	5	22	0.55	5	
8	0.65	5.5	23	0.7	6	
9	0.5	6	24	0.65	7	
10	0.55	6.5	25	0.5	8	
11	0.6	7	26	0.5	3	
12	0.65	7.5	27	0.4	3.5	
13	0.65	8.0	28	0.6	9	
14	0.6	8.5	29	0.7	8.5	
15	0.55	9	30	0.65	8	

Осциллограммы напряжений

