17. РАСЧЕТ РЕЖИМА НЕЛИНЕЙНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА МЕТОДОМ ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА

Исль работы: графоаналитическое определение рабочей точки нелинейного резистора с использованием метода эквивалентного источника, решение нелинейного уравнения итерационным методом и методом Ньютона-Рафсона, определение статического и динамического сопротивления, линеаризация вольтамперной характеристики нелинейного резистора в рабочей точке.

Залание.

Структура нелинейной цепи и параметры ее линейной части заданы в таблице 17.1. Вольтамперная характеристика (ВАХ) нелинейного резистора (НР) симметрична относительно начала координат и задана совокупностью экспериментальных точек U_{i} , I_{k} , расположенных в первом квадранте.

$$U_a = (0, 30, 45, 54, 56, 55, 51, 48, 46, 45, 45, 50, 60, 73, 90)^T$$
 (1)

$$I_{-} = (0, 0.5, 1.0, 2.0, 3.5, 4.0, 51, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0, 9.0, 10)^{T}$$
 (2)

где Т – знак транспонирования.

Требуется определить:

- 1. Параметры эквивалентного источника относительно точек подключения НР.
- Используя ВАХ НР и внешнюю характеристику эквивалентного источника найти координаты рабочей точки.
- 3. Используя аппроксимацию ВАХ НР U(I) найти ток и напряжение НР итерационным методом и методом Ньютона-Рафсона.
- 4. Найти статическое и динамическое сопротивление
- 5. Выполнить линеаризацию цепи в окрестности рабочей точки
- 6. Проверить результаты расчета на рабочем столе EWB

Таблица 17.1

									A SHOULD BE		
Ne	E1	E2	E3	J1	132	RI	R2	R3	R4	R5	NR
1	1-2	1-4		5-1		2-3	1-5	4-5	3-4	101	3-1
	100	100		10		2	10	5	2	1000	
2	1-2	4-2		6-5			4-3	5-6	3-5	2-6	3-1
	120	20	1	5	1 3	The same	3	4	1	1	
3	1-2	4-5	100	5-3		1-3	4-5	3-4	2-5		2-3
	100	50	1200	5		4	25	10	2		
4	1-2	4-2	6-5				3-4	5-6	3-5	2-6	1-3
	50	200	50	1000		1	5	20-	10	10	1000
5	1-2	4-5		6-5		1-3	3-4	5-6	2-6	1000	2-3
	70	200		5		6	10	10	10		-
6	1-2	5-4	5-6				3-4	5-6	1-6	1-3	2-3
	116	100	36				12	36	12	8	1
7	1-2	7-2		4-6		1-3	6-7	4-5	4-6	2-3	3-4
	200	50	1-3	50		10	1	20	1	10	-
8	1-2	4-5		3-5			4-5	1-3	3-4	1-5	2-3
0	100	100	100	5			50	10	20	20	1
9	1-2	3-2		5-4		1-2	3-4	4-5	5-1		4-1
	100	200	1	10		50	18	10	8		10000
10	1-2	5-6		4-6		1-3	4-5	3-4	2-6		2-3
10	100	200	134	10	diam'r	20	10	5	5		
11	1-2	6-5	7-2		B 100 11	1-3	6-7	4-5	2-3	5-7	3-4
**	180	100	100			6	10	1	30	10	

NR	R5	24	R3.	R2	RI	32	31	E3.	E2	EI	Ne
NR 2-5	1	4-5	2-4	3-5	1-3	4-2	3-5			1-2	Ne 12
		10	14	12	12	10	5			280	
2-5		14	5-6	1-3	12		6-5		3-4	280	13
		12	4	24	1		15		180	100	
6-7	3-7	4-6	4-5	3-6	2-3			5-6	3-4	1-2	14
	1-2	10	30	30	16			60	60	80	
3-5	1-2	5-7	30 5-6	4-3	16	1		6-7	4-2	1-2	15
	4	10	10	15	10			100	150	150	
5-6		1-5	3-6	3-4	2-3		5-6		150	150	16
		2	8	15	10		10		150	200	
1-6	5-6	5-6	8 1-3	3-4	2-3	1000	6-3		5-4	200	17
	20 4-5	5 4-6	20	3	20		5		35	200	
2-6	4-5	4-6	20	3-6	20	100	5-6		3-4	200	18
	4-5	3-2	3-4	6-4	24		5		100	300	1
2-5		3-2		6-4	24	100	5		5-6	300	19
	30	4-5	5-2	6	20		10		60	200	
3-4		4-5	5-2	5-6	20		3-2		2-6	1-2	20
	4-	3-1	6-1	5-6	10		10		200	100	
5.4	4-3	3-1	6-1	5-6	2-3		10		5-6	100 1-2 100 1-2	21
	7	3-4	10	50	20		5		150	100	
1-5		3-4	4-5	1-3	2-3	4-5	5 4-1			1-2	22
+		8	7	14	14	30	5			70	
6-5	6-3	5-2	7 2-3	3-4	1-3	111111	3-2		5-4	70	23
	15	40	3.4	8	4		2.5		120	20	-8
3-5		4-5	3-4	1-4	2-3	1000	2.5 5-3 5		4-1	1-2	24
		20	5-1	25 5-4	20		15			50	
3-4		1-3	5-1	5-4	2-3		1-4	1900	50 4-5	50 1-2	25
4	1	6-5	6-2	42	12		2		42	36	
4-5	5-2	6-5	6-2	1-3	12		2-4	1	3-4	36	26
	3-4	8-1	3-2	20	20		5		108	120	
5-6		41	3-2	4-5	3-5	1-6	5 2-5	Heren		1-2	27
	10	3-6	20	4	15	5	8			60	
2-3	HEE		4-5	5-6	15	9	8 3-2 5 6-5	1-74	4-5	60	28
		8	10	10	15		5			65	
3-5		1-6	5-6	4-3	2-3	1	6-5	10000	50	65	29
		20	5	5	20		10		200	50	-7
1-3		20	3-4	5 4-5			2-3	1	5-4	1-2	30
		15	15	50			5		150	100	30

$$U_{I}(I) = U_{a} + R_{d}(I_{a}) \cdot (I - I_{a}) = E_{d}(I_{a}) + R_{d}(I_{a}) \cdot I$$
, (17)
 $E_{J}(I_{a}) = U_{a} - R_{J}(I_{a}) \cdot I_{a}$ (18)

Здесь $E_d(I_a) = U_t(0)$ - точка пересечения касательной $U_t(I)$ с осью ординат.

Уравнение (17) можно рассматривать как уравнение ветви с источником напряжения $E_d(I_a)$ и сопротивлением $R_d(I)$. Для рассматриваемого примера имеем

$$U_a = 54.25$$
, $I_a = 1.525$, $R_a(I_a) = 10.57$, $E_a(I_a) = 38.12$.

Этим параметрам соответствует пунктирная линия, показаниая на рис.6-6. $U_i(I) = 38.12 + 10.57I$

Схема замещения нелинейного резистора для небольших отклонений от рабочей точки показана на рис.7.

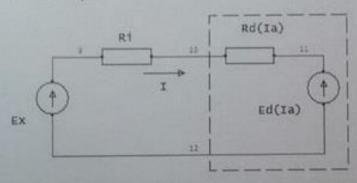


Рис. 7. Схема замещения нелинейного резистора для расчета режима в окрестности рабочей точки

В точке экстремума динамическое сопротивление равно нулю $R_d=0$, и схема замещения содержит только источник напряжения $E_d(I_s)=U_s$. Линейные схемы замещения используются для оценки устойчивости нелинейных цепей, при расчете режима переменного тока электронных усилителей и т.п.

7. Расчет токов и напряжений в линейной части нелинейной цепи

В соответствии с теоремой о компенсации элемент, параметры режима которого известны, может быть заменен компенсационным источником тока/напряжения без изменения режима цепи. Для расчета токов и напряжений в линейной части нелинейной цепи заменим нелинейный резистор известным источником напряжения $E_\varepsilon = U_a$, как показано на рис.8.

Токи ветвей находятся по закону Ома и законам Кирхгофа

$$I_{R3}=I_{R4}=\frac{E_1+E_2-E_e}{R_3+R_4}=\frac{100+150-54.25}{30}=6.525\,,\qquad I_{R2}=\frac{E_2}{R_2}=\frac{150}{50}=3\,,$$

$$I_{R2}=I_{R3}+I_{R2}=6.525+3=9.525\,,\;I_{E1}=I_{R3}-J_1=6.525-5=1.525\,,\;U_{J1}=E_1-E_e=45.75.$$
 Результаты расчета совпадают с показаниями приборов схемы, показанной на рис. 8.

17. РАСЧЕТ РЕЖИМА НЕЛИНЕЙНОЙ ЦЕПИ ПОСТОЯННОГО ТОКА МЕТОДОМ ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА.

Цель работы: освоение метода эквивалентного генератора и теоремы о компенсации применительно к расчету нелинейных цепей, умение пользоваться такими понятиями как статическое и динамическое сопротивление, развитие навыков линеаризации характеристик нелинейных цепей и построения линейных схем замещения нелинейной цепи, освоение метода Ньютона-Рафсона и итерационного метода решения нелинейных уравнений.

Рассмотрим определение рабочей точки нелинейного резистора, а также режим линейной подцепи с помощью метода эквивалентного генератора и теоремы о компенсации. Структура цепи и параметры элементов заданы в таблице 1.

Таблица 1. No E_1, B HP J_1,A $R_{z}.O_{M}$ R.OM E_2, B $R_{\star}.O_{M}$ 30 1-5 1-2 5-2 3-2 3-4 4-3 4-5 100 U(I)5 15 50 150 15

Схема цепи, построенная по данным таблицы 1, показана на рис.1-а.

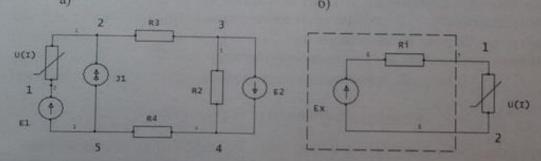
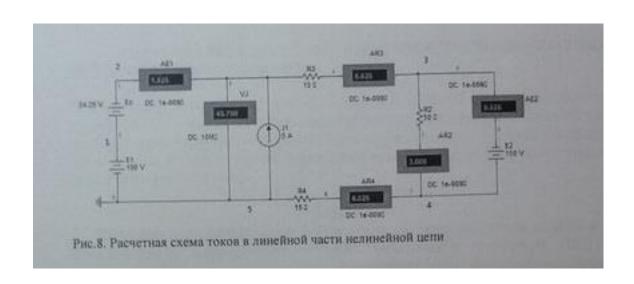


Рис.1 Схема нелинейной цепи – а) и её преобразование с помощью метода эквивалентного генератора – б)


Вольтамперная характеристика нелинейного резистора задана дискретными значениями напряжения и тока U_k, I_k

$$U_e = (0, 30, 45, 54, 56, 55, 51, 48, 46, 45, 45, 50, 60, 73, 90)^T$$
 (1)

$$I_r = (0, 0.5, 1.0, 2.0, 3.5, 4.0, 51, 4.5, 5.0, 5.5, 6.0, 7.0, 8.0, 9.0, 10)^T$$
 (2)

где Т - знак транспонирования.

Графики характеристики $U_e = f(I_e)$ и обращенной характеристики $I_e = f^{-1}(U_e)$ представлены на рис.2. При построении графиков использована линейная интерполяция.

источника $U_1=E_s$, напряжение HP — по выходной характеристике $U_2(U_1)$ при входном напряжении $U_1=E_s$. Входное напряжение двухполюсника определяется по закову Ома и ЗКН

$$U_{eff} = R_e I_e$$
 $U_{te} = U_{eff} + U_e$ (5)

После подстановки экспериментальных данных (1) и (2) в формулу (5) получим

$$U_{e8} = (0, 15, 30, 45, 60, 90, 105, 120, 135, 150, 180, 210, 240, 270, 300)^7$$
 (6)

$$U_{1c} = (0, 45, 75, 99, 116, 145, 156, 168, 181, 195, 210, 226, 260, 300, 390)^T$$
 (7)

Входная и выходная характеристики нелинейного четырехполюсника, построенные по данным (1), (2), (6) и (7), показаны на рис. 4. Рабочий режим НР при входном напряжении $U_{1e}=E_s=100\,\mathrm{onpe}$ деляется графически, как показано на рис.4: $I=1.5,\ U_2=55,\ U_{3e}=45$.

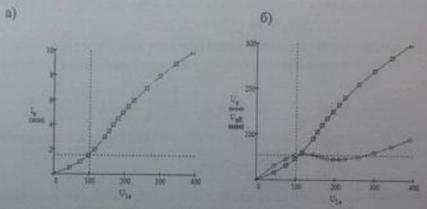


Рис. 4. Входная характеристика – а) и выходные характеристики четырехполюсника – б)

3. Определение рабочей точки с помощью внешней характеристики источника и ВАХ НР Рабочая точка НР может быть определена как точка пересечення внешней характеристики эквивалентного источника и вольтамперной характеристики нелинейного резистора в соответствии с выражением: $E_i - R_i I = U(I)$. Схема определения РТ ($U_2 = 54$, I = 1.45) для случая E = 100 и $R_i = 30$ приведена на рис. 4. При уменьшении сопротивления источника до значения $R_i = 12$ (пунктирная диния) рабочая точка переходит с возрастающего участка ВАХ на спадающий участок.

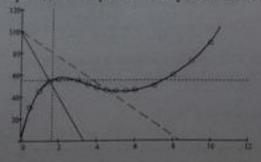


Рис.4. Графическое определение координат рабочей точки.

4. Определение рабочей точки с помощью решения нелинейного уравнения

Экспериментальная характеристика HP может быть аппроксимирована полиномом $U(I) = a_0 I + a_1 I^2 + a_2 I^3 + a_3 I^3 + a_4 I^3$ (5)

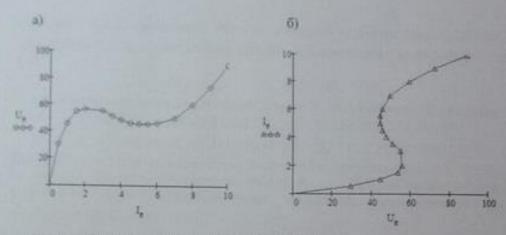


Рис 2. ВАХ нелинейного резистора $U_s(I_s)$ – а) и $I_s(U_s)$ – б)

В соответствии с рис. 2-б резистор имеет характеристику S – типа, которая является однозначной функцией тока и неоднозначной функцией напряжения.

Для определения тока и напряжения HP заменим линейную часть нелинейной цепи эквивалентным источником, как показано на рис. 1-б. Параметрами источника является напряжение холостого хода E_{\star} и внутреннее сопротивление R_{\star} . Напряжение холостого хода измеряется относительно узлов 1-2 при исключении из цепи HP, сопротивление R_{\star} определяется как входное сопротивление пассивного двухполюсника относительно зажимов 1-2, измеренное при равенстве нулю напряжений E_{\star} , E_{\star} и тока J_{\star} .

1. Определение параметров эквивалентного генератора

Напряжение XX определяется по схеме, показанной на рис.3-а. Используя принцип суперпозиции, получим

$$E_s = E_1 + E_2 - J_1(R_3 + R_4) = 100 + 150 - 5(15 + 15) = 100$$
 (3)

Внутреннее сопротивление источника в соответствии с расчетной схемой (рис. 3-б) определяется по формуле

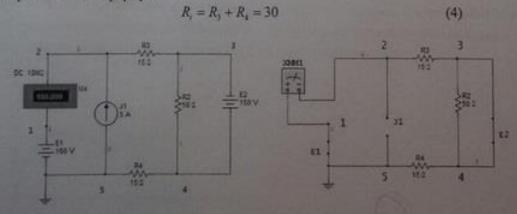


Рис. 3. Расчетные схемы для определения напряжения XX - a) и внутреннего сопротивления - б).

2. Построение входной и выходной характеристики нелинейного делителя напряжения

Расчетная схема (рис.1-б) представляет собой нелинейный делитель напряжения. Ток источника определяется по входной характеристике $I(U_1)$ при заданном значении

$$I_{k+1} = G(I_k), \quad (k = 0, 1, 2...)$$
 (14)

В качестве нудевого приближения примем значение тока $I_{\rm B}$ =1.5 . Итерационная процедура имеет вид

$$I_1 = G(1.5) = 1.51$$
, $I_2 = G(1.51) = 1.516$, $I_3 = G(1.516) = 1.52$, $I_4(1.52) = 1.522$
 $I_3 = G(1.522) = 1.523$ $I_4 = G(1.523) = 1.524$ $I_7 = G(1.524) = 1.525$

На сравнения методов следует, что метод. Ньютона-Рафсона имеет более высокую ехолимость.

5. Статическое и динамическое сопротивление..

Статическое сопротивление *R*, нединейного резистора определяется как отношение выпражения к току

$$R_s(I) = \frac{U(I)}{I} = 70.1 - 29.8I + 5.31I^2 - 0.426I^3 + 0.013I^4$$
 (15)

Динамическое сопротивление R_s определяется как отношение приращений напряжения и тока в окрестности рабочей точки

$$R_d(I) = \frac{dU}{dI} = 70.1 - 59.61I + 15.93I^2 - 1.704I^3 + 0.066I^4$$
 (16)

Графики статического и динамического сопротивления показаны на рис. 5. Статическое сопротивление определяется тангенсом угла наклона прямой, соединяющей начало координат с рабочей точкой, динамическое сопротивление - тангенсом угла наклона касательной к ВАХ в рабочей точке (рис 5-б). На выпуклом участке ВАХ динамическое сопротивление падает, на вогнутом участке возрастает с ростом тока. В точках максимума и минимума немолотонной характеристики динамическое сопротивление равко нулю, на спадающем участке величны R, отрицательна.

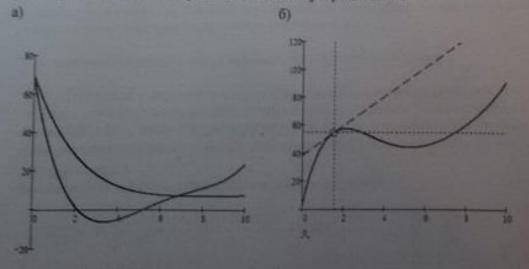


Рис.6. Статическое $R_i(I)$ и динамическое сопротивление $R_j(I)$ - а) нелинейного элементи с вольтамперной характеристикой U(I) - б)

6. Линеаризация ВАХ НР в окрестности рабочей точки.

Для расчета режима HP в окрестности рабочей точки используют линейную ехему замещения нелинейного элемента, параметры которой вытеклют из формулы для ркая Тейлора, в который характеристика U(I) разлагается вблизи рабочей точки (U_a,I_a)

THE
$$a_0 = 70.1$$
, $a_1 = -29.8$, $a_2 = 5.31$, $a_3 = -0.426$, $a_4 = 0.013$

График этой зависимости показан на рис.4. Рабочий ток находится из решения нелинейного уравнения

$$F(I) = E_s - IR_s - U(I) = 0$$
 (6)

В электротехнических расчетах для решения нелинейных уравнений широко используется итерационный метод и метод Ньютона-Рафсона

4.1 Метод Ньютона-Рафсона

Численное решение нелинейного уравнения F(I) = 0 находится в два приема. Сначала делают грубую оценку корней и затем уточняют их значение на основе принятого алгоритма. Для получения нулевого приближения I_0 обычно используют графический метод. Поправку для грубой оценки ΔI_0 получают из разложения функции в ряд Тейлора

$$F(I_t) \approx F(I_0) + F'(I_0) \cdot \Delta I_0$$
 (7)

Считая, что уточненное значение корня I_i является истинным, т.е. $F(I_i) = 0$, получим формулы для первой поправки и уточненного значения тока

$$\Delta I_0 = -\frac{F(I_0)}{F'(I_0)}$$
 $I_1 = I_0 + \Delta I_0$ (8)

Уточненное значение на k-ом шаге определяется по формуле

$$I_{k+1} = I_k - \frac{F(I_k)}{F'(I_k)}$$
 (9)

Расчет производится до получения пренебрежимо малого значения поправки. Для рассматриваемого примера имеем

$$F(I) = 100 - 100.1 \cdot I + 29.8I^2 - 5.31I^3 + 0.426I^4 - 0.013I^5$$
 (10)

$$F'(I) = -100.1 + 59.61I - 15.93I^2 + 1.7I^3 - 0.066I^4$$
 (11)

В качестве нулевого приближения примем значение тока I_0 = 1.45, полученное графозналитическим методом в разделе 2. Определим поправку и уточненное значение тока

$$\Delta I_0 = -\frac{F(1.45)}{F'(1.45)} = -\frac{3.12}{-42.27} = 0.0738, \quad \delta I_0 = \frac{\Delta I_0}{I_0} \cdot 100 = 5.1\%, \quad I_1 = 1.524$$

На слепующем шаге уточнения имеем

$$\Delta I_1 = -\frac{F(1.524)}{F'(1.524)} = -\frac{0.055}{-40.6} = 1.34 \cdot 10^{-1}, \quad \delta l_1 = \frac{\Delta I_1}{I_1} \cdot 100 = 0.09\%, \quad I_2 = 1.525$$

Ввиду малости поправки $\delta l_1 = 0.09\%$ оценку $I_2 = 1.525$ можно принять за точное значение. Находим напряжение HP: $U_2(1.525) = 54.25$

4.2. Метод итераций

В методе итераций нелинейное уравнение F(I) представляют в виде

$$F(I) = 0 \rightarrow I = G(I)$$
 (12)

Из формулы (13) следует, что
$$G(I) = 0.999 + 0.298I^2 - 0.053I^3 + 4.26 \cdot 10^{-3}I^4 - 1.32 \cdot 10^{-4}I^5 \qquad (13)$$

Приближению значение кория I_3 подставляют в правую часть уравнения (15) и полученное значение $I_3 = G(I_0)$ принимают за уточненное значение. Процесс повторяется в соответствии с алгоритмом