РАСЧЕТ СИНУСОИДАЛЬНЫХ РЕЖИМОВ СИМВОЛИЧЕСКИМ МЕТОДОМ

Вариант 16

1. Пассивный двухполюсник, представленный на рисунке 1, питается от источника синусоидального напряжения, действующее значение которого равно 200 В, при этом комплексная амплитуда тока двухполюсника $I_m = 20e^{j\frac{11}{12}\pi}$ А. Ток двухполюсника опережает напряжение на 45°. Частота питающего напряжения 100Гц. Определите полное сопротивление, циклическую частоту напряжения и его комплексную амплитуду. Выразите ток и напряжение двухполюсника ка функции времени.

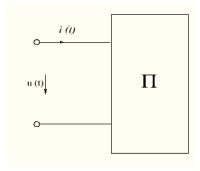


Рис.1 – Пассивный двухполюсник

2. На рисунке 2 представлена простая цепь переменного тока. Питающее напряжение определено функцией $u(t) = 50\sin(1000t)$ В. Реактивные сопротивления ветвей схемы равны друг другу, их величина 2 Ома. Определите комплексы действующих значений токов ветвей, индуктивность, полное сопротивление и ток источника в функции источника.

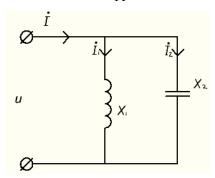


Рис.2 – Простая цепь переменного тока

3. Постройте векторные диаграммы действующих значений токов и напряжений в схеме на рисунке три, если известно, что действующее значение тока индуктивности равно 10 A, при реактивном сопротивлении индуктивности

10 Ом. Реактивное сопротивление конденсатора равно 5 Ом, как и сопротивление резистора на участке цепи бв.

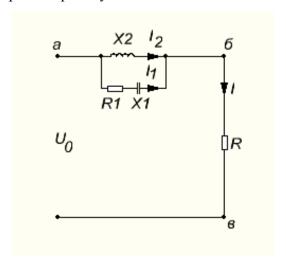


Рис.3 – Цепь переменного тока

4. Докажите, что действительная составляющая полной мощности, цепи на рисунке 4 равна полной мощности резистора в той же цепи. Цепь питается от переменного напряжения, действующее значение которого равно 480 В, реактивные сопротивления конденсатора и индуктивности равны 8 Ом и 4 Ом соответственно, активное сопротивление – 8 Ом.

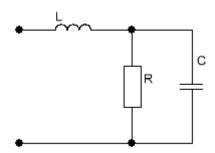


Рис.4 – Цепь переменного тока

5. Для цепи с данными из задачи 4, при частоте 50Гц, постройте графики мгновенной мощности каждого элемента схемы, включая источник. Затем, разделите ток источника на две составляющие: активную, находящуюся в фазе с напряжением (вектор активной составляющей тока на комплексной плоскости определяется как проекция вектора тока на вектор напряжения $I_{am} = I_m \cdot \cos(\varphi)$), и реактивную, отстающую или опережающую напряжение на $\pi/2$ (в зависимости от знака $I_{pm} = I_m \cdot \sin(\varphi)$), и постройте графики мгновенной мощности источника для обеих составляющих тока. Объясните как согласуются между собой построенные графики.