Расчет параметров и механической характеристики асинхронного двигателя [1, с.15-272], [3, с.241-619]

Цель работы: Построить механическую характеристику асинхронного двигателя.

- 1. Построить Г-образную схему замещения АД.
- 2. Рассчитать параметры Γ -образной схемы замещения и первичные параметры $A \mbox{$\sc \pi}$ для номинального режима.
- 3. С использованием вычисленных параметров схемы замещения асинхронного двигателя, критических, номинальных и пусковых значений M_{κ} , M_{n} , M_{n} , s_{κ} , s_{n} начертить механическую характеристику M=f(s) АД, приняв $s_{n} \approx R_{2}^{"}$.

Данные для расчета параметров асинхронных двигателей приведены в табл. 4, 5.

Табл.4. Исходные данные двигателей по вариантам

таол.4. Исходные данные двигателей по вариантам										
№ варианта; базовый двигатель УЗ	Р _н , кВт	U _н , В* (высота стержня ротора, см.)	n ₁ об/мин		№ варианта; базовый двигатель УЗ	Р _н кВт	U _н , В*, (высота стержня ротора, см.)	n ₁ об/мин		
1. 4A71B2	1,1	380 (1,13)	3000		26. 4A200M4	37	380 (4,8)	1500		
2. 4A132M4	11	380 (2,47)	1500		27. 4A250S8	37	380 (5,4)	750		
3. 4A80B6	1,1	380 (1,48)	1000		28. 4A200L2	45	380 (3,44)	3000		
4. 4A80A2	1,5	380 (1,31)	3000		29. 4A250S6	45	380 (5,4)	1000		
5. 4A160S4	15	660 (3,3)	1500		30. 4A250M8	45	380 (5,4)	750		
6. 4A160M6	15	380 (3,36)	1000		31. 4A225M2	55	380 (3,5)	3000		
7. 4A180M8	15	380 (3,93)	750		32. 4A225M4	55	380 (5,25)	1500		
8. 4A80B2	2,2	380 (1,31)	3000		33. 4A250M6	55	380 (5,4)	1000		
9. 4A90L4	2,2	380 (1,61)	1500		34. 4A280S8	55	380 (3,0)	750		
10. 4A100L6	2,2	380 (1,74)	1000		35. 4A250S2	75	380 (3,7*)	3000		
11. A112MA8	2,2	380 (1,72)	750		36. 4A250S4	75	380 (5,0)	1500		
12. 4A100L2	5,5	380 (1,6)	3000		37. 4A280S6	75	380 (3,45)	1000		
13.4A112M4	5,5	380 (2,15)	1500		38. 4A280M8	75	380 (3,0)	750		
14. 4A132M2	11	380 (1,95)	3000		39. 4A280M2	132	380 (4,0)	3000		
15. 4A160S2	15	380 (2,9)	3000		40. 4A280M4	132	380 (4,0)	1500		
16. 4A160M2	18,5	380 (2,9)	3000		41. 4A250M2	90	380 (3,7)	3000		

17. 4A180M6	18,5	380 (3,46)	1000
18. 4A160M4	18,5	380 (3,4)	1500
19. 4A200M8	18,5	380 (3,9)	750
20. 4A180S2	22	380 (3,1)	3000
21. 4A180S4	22	380 (3,98)	1500
22. 4A180M2	30	380 (3,1)	3000
23. 4A180M2	30	660 (3,1)	3000
24. 4A200M2	37	380 (3,44)	3000
25. 4A225M6	37	380 (4,4)	1000

42. 4A250M4	90	380 (5,0)	1500
43. 4A280M6	90	380 (3,45)	1000
44. 4A280S2	110	380 (4,0)	3000
45. 4A280S4	110	380 (4,0)	1500
46. 4A225M4	55	660 (5,25)	1500
47. 4A200L4	45	660 (4,8)	1500
48. 4A200M4	37	660 (4,8)	1500
49.4A180M4	30	660 (4)	1500
50. 4A180S4	22	660 (3,98)	1500

Для контроля правильности расчета при курсовом проектировании можно сравнить полученные параметры двигателя: высоту паза ротора из табл.1, индукцию в зазоре, линейную нагрузку, плотность тока обмотки статора, КПД, соѕф (табл.2) с соответствующими данными для двигателей серии 4А.

Примечание*- Линейное напряжение (Y)

	<u>Табл. 5. Технические данные двигателей 4A (IP4-</u>													
Типоразмер	P	B_{δ}	A	j	КПД	cosφ	X_m	R'_1	X'_1	R''_2	X''_2			
двигателя	кВт	Тл	А/см	A/mm^2	%	•								
	Синхронная частота вращения 3000 об/мин													
4А71В2У3	1,1	0,72	200	8.5	77,5	0,87	2,8	0,13	0,054	0,069	0,084			
4A80A2Y3	1.5	0,72	194	6,1	81,0	0,83	2,5	0,084	0,051	0,049	0,081			
4A80B2Y3	2,2	0,73	218	6,5	83.0	0,87	2.7	0,076	0,060	0,049	0,087			
4A100L2Y3	5,5	0,68	247	5,6	87,5	0,91	3,8	0,050	0.054	0,036	0,11			
4A132M2Y3	11,0	0,71	248	5,9	88,0	0,90	4,2	0,040	0,061	0,025	0,12			
4A160S2Y3	15,0	0,72	335	6,3	88.0	0,91	4,0	0,052	0.092	0,022	0.12.			
4A160M2Y3	18,5	0,70	355	6,5	88,5	0.92	4.5	0,049	0,092	0,022	0,12			
4A180S2Y3	22,0	0,78	387	5,6	88,5	0,91	3,6	0,035	0,091	0,020	0,11			
4A180M2Y3	30,0	0,79	366	5,2	90,5	0,90	3,8	0,033	0,073	0,018	0,11			
4A200M2Y3	37,0	0.82	403	4,8	90.0	0,89	4,1	0,029	0,094	0,021	0,12			
4A200L2Y3	45,0	0,79	407	4,9	91,0	0,90	4.9	0,027	0,088	0,020	0,13			
4A225M2Y3	55,0	0,74	405	5,0	91.0	0,92	5.6	0,026	0.092	0.019	0,12			
4A250S2Y3	75,0	0,77	409	4,4	91,0	0.89	4,8	0,021	0.080	0,015	0,13			
4A250M2Y3	90,0	0,76	419	4,0	92.0	0,90	5,2	0.026	0,078	0,016	0,13			
4A280S2Y3	110	0,79	457	3,3	91,0	0,89	3,8	0,017	0,097	0,013	0,10			
4A280M2Y3	132	0.77	474	3,6	91,5	0,89	4,2	0,017	0,095	0,013	0,10			

Типоразмер	P	B_{δ}	\boldsymbol{A}	j	КПД	cosφ	X_m	R'_1	X'_I	R''_2	X''_2	
двигателя	кВт	Тл	А/см	A/mm²	%							
Синхронная частота вращения 1500 об/мин												
4A80A4Y3	1,1	0,84	218	7,6	75,0	0.81	1,7	0,12	0,078	0,068	0,12	
4A80B4Y3	1,5	0,82	231	8,0	77,0	0,83	1.9	0,12	0,078	0,068	0,12	
4A90L4Y3	2,2	0.88	233	7,6	83,0	0,83	2,1	0,098	0,076	0,06	0.13	
4А112М4УЗ	5,5	0,85	248	7,1	85.5	0,85	2,8	0,034	0,078	0,041	0,13	

4A132M4Y3	11,0	0,89	264	6,1	87,5	0,87	3,2	0,043	0,085	0,032	0,13
4A160S4Y3	15,0	0.72	314	5,7	88,5	0,88	4,0	0,047	0,086	0,025	0,13
4A160M4Y3	18,5	0,69	310	5.5	89,5	0,88	4,3	0,042	0,085	0,024	0,13
4A180S4Y3	22,0	0.74	333	5,4	90,0	0,90	4,0	0,041	0,080	0,021	0,12
4A180M4Y3	30,0	0.79	335	5,5	91,0	0,89	3,9	0.034	0.088	0,018	0,12
4A200M4Y3	37,0	0,76	368	5,9	91,0	0,90	4,4	0,039	0,086	0,018	0,14
4A200L4Y3	45,0	0,73	382	5,6	92,0	0,90	4,6	0.034	0,082	0,017	0,14
4A225M4Y3	55,0	0.76	370	5,3	92,5	0,90	4,2	0,027	0,086	0,015	0,14
4A250S4Y3	75,0	0.74	334	4,3	93,0	0,90	4,4	0,025	0,089	0.014	0,11
4A250M4Y3	90,0	0,70	413	4,4	93,0	0,91	5,0	0,024	0,093	0,014	0,12
4A280S4Y3	110	0.75	446	3,8	92,5	0,90	4,9	0,023	0,122	0,019	0,16
4A280M4Y3	132	0.79	473	3,9	93,0	0,93	4,5	0,021	0.115	0,018	0,15

Для расчета параметров схемы замещения и величин, используемых при построении механической характеристики, можно использовать программу, данную в приложении.

Продолжение табл.5

								Tipor		TIPIC I	
Типоразмер	P	B_{δ}	\boldsymbol{A}	j	КПД	cosφ	X_m	R'_I	X'_I	R''_2	X''_2
двигателя	кВт	Тл	А/см	А/мм	%						
Синхронная частота вращения 1000 об/мин											
4А80В6УЗ	1.1	0,80	223	7,3	74,0	0,74	1,6	0,12	.0,11	0,11	0,19
4A100L6Y3	2,2	0,81	231	6,3	81,0	0,73	1,9	0,090	0,11	0,067	0,21
4A160M6Y3	15,0	0,74	292	6,9	87,5	0,87	3,0	0,062	0,10	0,028	0,16
4A180M6Y3	18,5	0,82	377	6,3	88,0	0,87	2,9	0,056	0,11	0,026	0,13
4A225M6Y3	37,0	0 78	369	5,7	91,0	0,89	3,7	0,042	0,10	0,019	0,13
4A250S6Y3	45,0	0,76	356	5,1	91,5	0,89	3,8	0,037	0,090	0,015	0,14
4A250M6Y3	55,0	0,82	364	5,5	91,5	0,89	3,4	0,034	0,083	0,014	0,13
4A280S6Y3	75,0	0,79	401	4,6	92,0	0,89	3,7	0,032	0,12	0,021	0.13
4А280М6УЗ	90,0	0,81	393	5.0	92,5	0,89	3,5	0,03	0,11	0,019	0,12

Типоразмер	P	B_{δ}	A	j	КПД	cosφ	X_m	R'_1	X'_1	R''_2	X''_2	
двигателя	кВт	Тл	А/см	A/mm^2	%							
Синхронная частота вращения 750 об/мин												
4A112MA8Y	2,2	0.91	263	6,9	76,5	0,71	1,5	0,093	0.11	0,083	0.17	
4A180M8Y3	15,0	0,81	378	6,4	87,0	0,82	2,4	0,034	0,13	0,030	0,17	
4A200M8Y3	18,5	0,79	379	8,1	88,5	0,84	2,6	0,057	0,13	0,028	0,16	
4A250S8Y3	37,0	0,81	395	5,9	90,0	0,83	2.8	0,047	0,11	0,017	0,18	
4A250M8Y3	45,0	0,83	382	5,4	91,0	0,84	2,6	0.037	0.099	0,016	0.17	
4A280S8Y3	55,0	0.83	385	4,3	92,0	0,84	2,5	0,035	0,12	0,022	0,14	
4A280M8Y3	75,0	0,82	387	4,0	92,5	0,85	2,6	0,028	0,12	0,021	0,13	

В табл. 4, 5 представлены данные двигателей серии 4A имеющих климатическое исполнение *У3*. В условном обозначении двигателя цифра, стоящая перед климатическим исполнением, ука-

зывает на число полюсов. Например, двигатель 4A71B2У3 имеет два полюса, двигатель 4A280S6У3 имеет 6 полюсов.

Методические указания

Исходя из схемы замещения асинхронного двигателя, проводят расчет абсолютных значений параметров по параметрам в относительных единицах (о.е.) X_m ; R'_1 ; X'_1 ; R''_2 ; X''_2 для уточненной схемы замещения АД рис. 1. Параметры и типоразмер АД, приведенные в табл. 5, определяются мощностью, скоростью и линейным напряжением, которые берутся из табл. 4 для вашего номера варианта. Например, для варианта №1 это 4A71B2У3, 1,1 кВт, 3000 об/мин, 380 B, X_m =2,8; R'_1 =0,13; X'_1 =0,054; R''_2 =0,069; X''_2 =0,084; КПД=77,5%; $\cos \varphi$ =0,87.

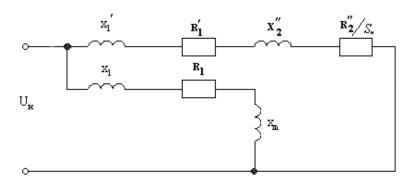


Рис. 1. Г-образная схема замещения АД для номинального режима

Расчет асинхронного двигателя (Пример расчета)

Для варианта N по [6], табл. 4 и 5, базовый двигатель 4A280S6V3, n_1 =1000 об/мин]. Паспортные данные: $P_{\rm H}$ =75 кВт; $U_{\rm H}$ =380 В; $f_{\rm H}$ =50 Γ ц; $\eta_{\rm H}$ =92%; $\cos \varphi$ =0,89; $s_{\rm H}$ ≈ $R_{\rm 2}$ =0,02 (уточняется в ходе расчета), число пар полюсов p=3 (2p=6).

Номинальный ток двигателя, исходя из линейного номинального напряжения $U_{\scriptscriptstyle H}$:

$$I_{\scriptscriptstyle H} = P_{\scriptscriptstyle H}/(\eta_{\scriptscriptstyle H} \sqrt{3} \ U_{\scriptscriptstyle H} \cos \varphi) = 75000/(0.92\ 380\ 0.89\ 1.73) = 139\ A.$$

Параметры Г-образной схемы замещения АД для номинального режима в относительных единицах [6] по табл.5:

$$X_m = 3.7;$$
 $R_1 = 0.032;$ $X_1 = 0.12;$

 $R_2^{"}=0.021; X_2^{"}=0.13.$

Активное и индуктивное сопротивления статора в относительных единицах:

$$X_{I} = \frac{2X_{I}^{'}X_{m}}{X_{m} + \sqrt{X_{m}^{2} + 4X_{I}^{'}X_{m}}} = 2\ 0.123,7/(3.7 + (3.7^{2} + 40.123.7)^{0.5}) = 0.116.$$

$$R_1 = r_1' X_1 / X_1' = 0.032 \ 0.116 / 0.12 = 0.0309.$$

Коэффициент перевода относительных единиц в физические:

$$C = U_u / \sqrt{3} \cdot I_u = 380/(1.73 \cdot 139) = 1.576.$$

Взаимная индуктивность обмоток статора, ротора, приведенная к статору, индуктивное сопротивление намагничивающей цепи:

$$L_m = X_m \cdot C/314 = 3,7\cdot1,576/314 = 0,01857$$
 Гн.

$$x_m = X_m \cdot C = 3,71,576 = 5,83 \text{ Om.}$$

Активное сопротивление фазы обмотки статора:

$$r_s = r_l \cdot C = 0.0309^{\circ} 1.576 = 0.0487 O_{M}.$$

Индуктивное сопротивление:

$$x_1 = x_{1a} = X_1$$
 $C = 0.116$ $1.576 = 0.183$ O_M .

Индуктивность фазы обмотки статора:

$$L_s = (X_m + X_1) \cdot C/314 = (3.7 + 0.116) 1.576/314 = 0.01915 \, \Gamma_H.$$

Поправочный коэффициент для параметров Γ -образной схемы замещения:

$$\sigma_{z} = X_{I}^{'}/X_{I} = 0,12/0,116 = 1,0345.$$

Активное сопротивление ротора, приведенное к статору:

$$r'_2 = R_r = R_2'' \ C/\sigma_\epsilon^2 = 0.021 \ 1.576/(1.0345)^2 = 0.0309 \ Om.$$

$$R_2 = R_2'' / \sigma_2^2 = 0.021 / (1.0345)^2 = 0.02.$$

Индуктивность фазы обмотки ротора, приведенная к статору:

$$L_r = \frac{(X_m + (X_2^{''} / \sigma_{\varepsilon}^2))C}{314} = (3.7 + (0.13/1.0345^2))1.576/314 = 0.0192$$
 Гн

Индуктивное сопротивление фазы обмотки ротора, приведенное к статору:

$$x_2' = x_2'_a = X''_2 \cdot C / \sigma_H^2 = 0.13 \ 1.576/1.0345^2 = 0.19 \ Om.$$

$$X_2' = x'_2 *= X''_2 / \sigma_{II}^2 = 0.13/1.0345^2 = 0.12.$$

Коэффициент магнитной связи статора и ротора:

$$K_s = L_m/L_s$$
; $K_r = L_m/L_r$

Расчет механической характеристики двигателя

Номинальное и критическое скольжение

$$s_{H} = R_{2}''/\sigma_{c}^{2} = 0.02,$$

$$s_{\kappa} = r'_{2}/(x_{1} + x_{2}') = 0.31/(0.19 + 0.183) = 0.083.$$

При мощности двигателя Р=1-2,2 кВт

$$s_{\kappa} = r'_2/[r_s^2 + (x_1 + x_2')^2]^{0.5}.$$

Синхронная частота вращения двигателя

$$\omega_c = 2\pi f/p = 23,1450/3 = 104,7$$
 pað.

Кратность критического момента согласно формуле Клосса:

$$M_{\kappa}^* = M_{\kappa} / M_{\mu} = 0.5 M_{\mu}^* (s_{\mu}/s_{\kappa} + s_{\kappa}/s_{\mu}) = 2.2,$$
 $(M_{\mu}^* = 1).$

Номинальный момент двигателя по паспортным данным:

$$M_{\rm H} = P_{\rm H} / (\omega_{\rm c} (1-s_{\rm H})) = 75000 / (104, 7(1-0, 02)) = 730,9 \, H \, {\rm M.}.$$

Критический момент:

$$M_{\kappa} = 2.2730.9 = 1608 H_{M}.$$

Вычисляем пусковой момент АД с учетом эффекта вытеснения, исходя из высоты стержня ротора, пренебрегая влиянием насыщения. Учитывая, что обычно обмотка глубокого паза не имеет изоляции, то есть ширина паза $b=b_n$, что удельное сопротивление литого алюминиевого стержня высотой h примерно в два раза больше чем у меди (для $Al\ \rho_{al}=2^{\circ}\rho_{cu}$), получим коэффициент, характеризующий глубину проникновения тока при поверхностном эффекте ξ

$$\xi_{al} = h \sqrt{s} / 1.41 = 0.71^{\circ} h \sqrt{s}$$
 [cm].

Для двигателя 4A280S6У3 h=3,45 см, табл. 1, [7, стр.557].

Учитывая, что при пуске $s = s_n = 1$

$$\xi_{al} = 0.71 \cdot 3.45 \cdot \sqrt{l} = 2.45 \text{ cm}.$$

Коэффициенты k_x , k_r , учитывающие изменение индуктивного и активного сопротивлений обмотки ротора при пуске, определяются по графику [3] рис.2:

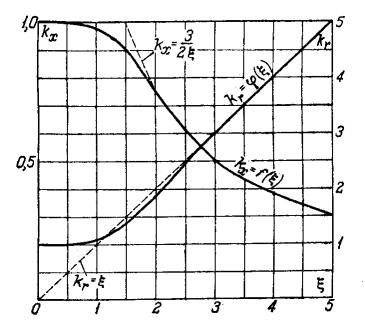


Рис. 2. Коэффициенты k_x , k_r стержня ротора АД

$$k_x = 0.6;$$
 $x_{2b} = x_2 \cdot k_x = 0.19 \cdot 0.6 = 0.115 \text{ Om};$ $k_r = 2.5;$ $r_{2b} = r_2 \cdot k_r = 0.031 \cdot 2.5 = 0.077 \text{ Om}.$
$$I'_{2n} = \frac{U_{\phi}}{\sqrt{(x_1 + x'_{2B})^2 + (r_s + r'_{2B})^2}} = \frac{220}{\sqrt{(0.183 + 0.115)^2 + (0.049 + 0.077)^2}} = 679.6 \text{ A}.$$

$$I_{2n} = I_n/(1+X_1/X_m) = 139/(1+(0,116/3,7)) = 134 \text{ A}.$$

$$M_n^* = (I_{2n})^2 \cdot s_n k_r / (I_{2n}^2 \cdot s_n) = 679,6^2 \cdot 0,02 \cdot 2,5 / 134^2 I = 1,21.$$

$$I*_{\Pi} = I'_{2n}/I_{2n} = 679,6/134 = 5,1.$$

Пусковой момент в физических единицах:

$$M_n = M_{H}^{-1}, 21 = 730, 9^{-1}, 21 \approx 880 \text{ H/m}.$$

По рассчитанным точкам моментов M^*_n , $M^*_{\kappa p}$, M^*_n и значениям s_n , $s_{\kappa p}$ строим механическую характеристику АД $M^*=f(s)$.

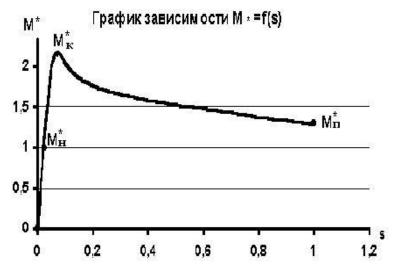


Рис. 3. Механическая характеристика АД

Выводы.

Механическая характеристика по основным параметрам соответствует требованиям ГОСТ. Кратность пускового момента 1,21 (1,2 для H=280) незначительно отличается от приведенного в ГОСТ 19523 (1...2,2). Следовательно, коррекция высоты паза не нужна. Критический момент M^*_{κ} = 2,2 также находится в требуемых пределах (1,7...2,6). Это же относится к номинальному скольжению (0,015...0,08), критическому скольжению (0,05...0,2) и пусковому току (4...7,5).

РЕКОМЕНДАТЕЛЬНЫЙ БИБЛИОГРАФИЧЕСКИЙ СПИСОК

Основная литература:

- 1. *Брускин Д.Э., Зорохович А.Е., Хвостов В.С.* Электрические машины и микромашины. М.: Высш. шк., 1990.
- 2. *Кацман М.М.* Расчет и конструирование электрических машин. М.: Энергоатомиздат, 1984.
- 3. Проектирование электрических машин/Под ред. И.П. Копылова. М.: Энергия, 1980.
- 4. $\mathit{Tuxomupos}\ \Pi.M$. Расчет трансформаторов: Учеб. пособие для вузов М.: Энергоатомиздат, 1986.

Дополнительная литература:

- 5. Автоматизированное проектирование электрических машин: Учеб. Пособие для вузов / Ю.Б. Бородулин, В.С. Мостейкис, Г.В. Попов, В.П. Шишкин. М.: Высш. шк., 1989.
- 6. Асинхронные двигатели серии 4A: Справочник/А.Э. Кравчик, М.М. Шлаф, В.И. Афонин, Е.А. Соболенская. М: Энергоиздат, 1982.
 - 7. Вольдек А.И. Электрические машины. М.: Энергия, 1966.