В программе Microsoft Excel следует создать файл данных с именем STAT

В открывшееся окно редактора следует занести все данные из выборки.

Указание: Заносить данные в файл следует в столбец, в дробных числах ставится запятая. После окончания набора данных рекомендуется сохранить данные.

Построение гистограмм.

Построение гистограммы осуществляется по следующему алгоритму.

• В выборке данных, занесенных в созданный файл, отыскивается наибольшее и наименьшее значения оцениваемого параметра Y: Y_{max} и Y_{min} соответственно.

Пример:

=MИH(A2:A101)

=MAKC(A2:A101)

где (А2:А101) – координаты диапазона значений данных выборки параметра Ү.

• Рассчитывается диапазон варьирования данных в выборке

- Осуществляется разбиение диапазона варьирования DY на интервалы ΔY . Число интервалов K и величина каждого интервала ΔY_i должны быть получены двумя различными способами:
 - рассчитаны математически по эмпирической формуле.
 - заданы пользователем согласно заданию.

Для расчета числа интервалов по эмпирической формуле используется формула Стерджесса

$$K = \varepsilon(1 + 3{,}322 \lg N),$$

где N - число данных в выборке; ϵ - операция округления до ближайшего целого.

Пример:
$$K = OKPY\Gamma \Pi((1+3,2*LOG(E10)); 0)$$
 где (E10) - N - число данных в выборке

Величина интервала ΔY_i рассчитывается как ΔY_i =DY/K. В этом случае все интервалы ΔY_i имеют одинаковую длину.

Ymin	Ymax		
341,79	649,19		
N	DY	K	ΔΥί
100	307,4	8	38,425

• Формируется столбец границ интервалов.

В каждой последующей ячейке в столбце шаг за шагом прибавляется полученное значение величины интервала ΔYi : сначала к наименьшему значению оцениваемого параметра Ymin, затем в следующей ячейке ниже — к полученной сумме и т.д. Так постепенно доходя до максимального значения Ymax.

Ymin	Ymax		
341,79	649,19		
N	DY	K	ΔΥί
100	307,4	8	38,425
	_		
	Границы		
№ п/п	интервалов		
0	341,79		
1	380,215		
2	418,64		
3	457,065		
4	495,49		
5	533,915		
6	572,34		
7	610,765		

Интервалом считается следующий диапазон: (i-1; i] или i-1<значения<=i (нестрогая верхняя граница интервала — это значение в ячейке, нижняя строгая граница — значение в предыдущей ячейке).

• Определяется число данных выборки, попадающих в каждый из интервалов ΔY_i .

Пользователь выделяет столбец рядом со столбцом границ интервалов, не выделяя нулевую по порядку ячейку. Нажимает «F2» и вводит функцию:

= ЧАСТОТА(Массив данных; Массив интервалов)

Массив_данных это множество данных, для которых вычисляются частоты. Массив_интервалов это столбец границ интервалов, за исключением максимального и минимального значения.

Пример: = ЧАСТОТА(A2:A101; G15:G22)

После требуется нажать «Ctr+Shift+Enter» или, удерживая нажатыми клавиши Ctrl-Shift щелкнуть мышкой «Ok».

	Границы	Количество
№ п/п	интервалов	точек
0	341,79	
1	380,215	4
2	418,64	4
3	457,065	8
4	495,49	10
5	533,915	13
6	572,34	12
7	610,765	16
8	649,19	33

• Рассчитывается частота попадания в каждый интервал P_i = n_i/N , где n_i - число данных в i-том интервале.

	Границы	Количество	Частота	
№ п/п	интервалов	точек	Pi	
(341,79			
1	380,215	4	0,04	
2	418,64	4	0,04	
	457,065	8	0,08	
4	495,49	10	0,1	
	533,915	13	0,13	
(572,34	12	0,12	
	610,765	16	0,16	
8	649,19	33	0,33	
	Всего точек:	100		

• На основании полученной таблицы с помощью стандартного инструмента для построения диаграмм «Мастер диаграмм» строится гистограмма распределения исследуемого показателя.

Тип диаграммы — гистограмма; диапазон данных — столбец «Частота P_i »; подписи по оси X — столбец «Границы интервалов»

Следует отметить, что на графике отражены только нижние границы интервалов!!!

После построения первой гистограммы, в которой число интервалов рассчитывается по эмпирической формуле, следует построить вторую гистограмму, где число интервалов задается пользователем согласно заданию.