Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования Национальный минерально-сырьевой университет «Горный»

Кафедра общей и технической физики

ФИЗИКА АТОМНАЯ И ЯДЕРНАЯ ФИЗИКА

Методические указания к расчетно-графическим работам и варианты заданий для студентов бакалавриата направления 150400

САНКТ-ПЕТЕРБУРГ

РЕКОМЕНДАЦИИ К ВЫПОЛНЕНИЮ РАСЧЁТНО-ГРАФИЧЕСКОЙ РАБОТЫ

Вопросы и задачи, содержащиеся в пособие, охватывают большую часть стандартного курса квантовой механики, изучаемого в технических вузах, и способствуют более глубокому усвоению теоретического материала данного раздела.

Выполнение расчётно-графической работы предполагает достаточно большой объём самостоятельной работы студента.

Перед выполнением расчётно-графической работы рекомендуется изучить лекционный курс на тему «Атомная и ядерная физика» и познакомиться с соответствующим разделом учебника общего курса физики. Если при самостоятельном изучении теоретического материала возникли вопросы, желательно обсудить их на практических занятиях, но если и после этого остались не ясные моменты можно получить индивидуальную консультацию преподавателя, ведущего расчётно-графическую работу или лектора.

При изучении физического явления, прежде всего, необходимо выяснить сущность явления, условия при которых оно возможно, определить с помощью каких физических величин, оно характеризуется. Желательно понять, как оно связано с другими явлениями и возможности его применения на практике: При определении физической величины важно обратить внимание на то, какая это величина — скалярная или векторная, какие свойства она характеризует, выяснить её размерность и формулу, определяющую связь с другими физическими величинами. При прочтении закона обратите внимание на границы его применения, определите, между какими явлениями он выражает связь, уточните формулировку и математическое выражение закона.

Расчётно-графическая работа оформляется на компьютере.

При выполнении расчётно-графической работы необходимо указать на титульном листе: название института, наименование дисциплины, название работы, фамилию и

инициалы студента и ведущего расчётно-графическое задание преподавателя, год выполнения работы.

Необходимо полностью переписать задачу своего варианта, а заданные физические величины выписать отдельно, при этом все чиловые значения должны быть переведены в одну систему единиц. При получении расчётной формулы приведите её полный подробный вывод.

Математическое решение должно сопровождаться пояснениями, а в случае необходимости его можно продемонстрировать рисунком. Задачу рекомендуется решить сначала в общем виде (в буквенных обозначениях), поясняя применяемые при написании формул буквенные обозначения, и только после проверки размерности искомой физической величины, подставить в выведенную формулу числовые значения. Все необходимые числовые значения величин должны быть выражены в системе «СИ». После получения окончательного результата, для удобства построения графических зависимостей можно перейти к вне системным единицам. Например, выразить энергию в электрон-вольтах.

Перед построением графиков необходимо получить аналитическое выражение функциональной зависимости. Выбрать удобный масштаб и указать его на осях координат, а так же физические величины и единицы измерения.

На координатной плоскости обязательно должны быть нанесены экспериментальные точки. Кривая, аппроксимирующая функциональную теоретическую зависимость строится в соответствии с методом наименьших квадратов.

Содержание отчёта

- 1.Титульный лист
- 2. Теоретическая часть:
- 2.1. Определения всех физических явлений, законов и величин, встречающихся в данной работе.
- 2.2. Основные расчётные формулы с пояснениями.
- 3. Расчётная часть:
- 3.1. Задание с исходными данными своего варианта.
- 3.2. Расчёт с пояснениями

3.3. Графики.

3.4. Анализ результатов. Заключение.

ТЕОРЕТИЧЕСКИЕ ОСНОВЫ АТОМНОЙ И ЯДЕРНОЙ ФИЗИКИ

Наиболее вероятное расстояние электрона в состоянии n от ядра:

$$r_n = \frac{4\pi\varepsilon_0 \hbar^2}{m_e Ze^2} n^2 \tag{1}$$

где m_e – масса электрона, Z – заряд ядра (атомный номер), n=1, 2, 3 – главное квантовое число. При n=1 и Z=1 это расстояние совпадает с радиусом первой боровской орбиты.

Одновременное измерение модуля момента импульса и трёх его проекций на оси координат в квантовой механике невозможно. Модуль момента импульса определяется:

$$\left| \vec{L}_{\ell} \right| = \hbar \sqrt{\ell (\ell + 1)} \tag{2}$$

Число ℓ =0, 1, 2,...n-1.. называется орбитальным квантовым числом. Проекция момента импульса на любую ось (z) тоже может принимать лишь определенные значения

$$L_{\ell_z} = m_\ell \hbar \,, \tag{3}$$

где m_{ℓ} =0, ±1, ±2, ..., ± ℓ и называется магнитным квантовым числом. Такое название связано с тем, что оно определяет также проекцию магнитного момента, создаваемого движением электрона вокруг ядра:

$$P_{\ell z} = -\mu_B m_{\ell} \,. \tag{4}$$

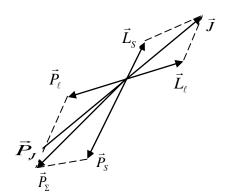
Модуль магнитного момента электрона

$$\left| \vec{P}_{\ell} \right| = \mu_B \sqrt{\ell (\ell + 1)} \tag{5}$$

где $\mu_B=e\hbar/2m_e$ =0,927·10⁻²³ Дж/Тл - магнетон Бора. Гиромагнитное отношение для орбитальных магнитного и механического моментов

$$\left|\vec{P}_{\ell}\right|/\left|\vec{L}_{\ell}\right| = P_{\ell z}/L_{\ell z} = \mu_B/\hbar = e/(2m_e) \tag{6}$$

Электрон обладает также собственным механическим моментом импульса, равным


$$\left| \vec{L}_{s} \right| = \hbar \sqrt{s(s+1)} \,, \tag{7}$$

где s=1/2—спиновое квантовое число. Соответствующий ему магнитный момент также квантован

$$\left| \vec{P}_s \right| = 2\mu_B \sqrt{s(s+1)} \,. \tag{8}$$

Проекции спинового момента импульса и магнитного момента на направление внешнего магнитного поля равны

$$L_{sz} = \hbar m_s \quad \text{if} \quad P_{sz} = 2\mu_B m_s , \qquad (9)$$

где m_s — спиновое квантовое число, может принимать значения $\pm 1/2$.

Гиромагнитное отношение для спиновых магнитного и механического моментов оказывается в два раза больше, чем для орбитальных моментов

$$|\vec{P}_s|/|\vec{L}_s| = P_{sz}/L_{sz} = 2\mu_B/\hbar = e/m_e$$
 (10)

Орбитальный \vec{L}_{ℓ} и спиновый \vec{L}_{S} моменты импульса электрона складываются и дают полный момент импульса электрона \vec{J} (рис.1). Он квантуется так же:

$$\left| \vec{J} \right| = \hbar \sqrt{j(j+1)} \tag{11}$$

где $j = |\ell \pm s| = |\ell \pm 1/2|$ - внутреннее квантовое число. Проекция полного момента на направление внешнего магнитного поля

$$j_z = \hbar m_i \,, \tag{12}$$

где m_i может принимать 2j+1 значение от -j до j.

Таким образом, для описания состояния электрона в атоме используют четыре квантовых числа: n, ℓ , m_{ℓ} и m_{s} . или n, ℓ , j, m_{i} . Из-за разных гиромагнитных отношений для спинового и моментов суммарный магнитный орбитального параллельным суммарному механическому оказывается не моменту. Поэтому вводится специальный коэффициент д-фактор который есть иное, как коэффициент не что пропорциональности между \vec{J} и \vec{P}_I :

$$\vec{P}_j = -g\mu_B \vec{J} \quad , \tag{13}$$

$$\vec{P}_{j} = -g\mu_{B}\vec{J} , \qquad (13)$$

$$g = 1 + \frac{j(j+1) + s(s+1) - \ell(\ell+1)}{2j(j+1)} . \qquad (14)$$

Порядок заполнения уровней в атоме определяется эмпирическими правилами Клечковского.

Первое правило Клечковского: сначала будут заполняться уровни с наименьшей суммой квантовых чисел $n+\ell$.

Второе правило Клечковского: если два уровня имеют одинаковую сумму квантовых чисел n+l, то первым будет заполняться энергетический уровень с меньшим значением п.

Электроны подчиняются принципу Паули: каждый энергетический уровень может быть заселен не более чем двумя электронами с противоположными спинами.

Вырожденные состояния электроны заселяют таким образом, чтобы спин $\left|\vec{L}_{S}\right|$ атома был максимален и, при этом по возможности максимальным было значение $\left|\vec{L}_{\ell}\right|$ — правило Гунда.

Рентгеновские спектры атомов

Экспериментально строение атомов изучают, исследуя спектры испускания и поглощения атомами электромагнитного излучения. Оптический диапазон соответствует переходам валентных электронов.

Для атома водорода формула, описывающая спектральные линии, подобрана экспериментально и называется формулой Бальмера — в честь ученого, впервые получившего ее для спектрального диапазона видимого излучения. Схема переходов приведена на рис.2.

Длины волн излучаемых атомом водорода определяются по формуле:

$$\frac{1}{\lambda} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right),\tag{15}$$

где $\mathit{R} = 1{,}097{\cdot}10^{7}\,\mathrm{m}^{\text{-}1} -$ постоянная Ридберга; n_1 и n_2 – главные

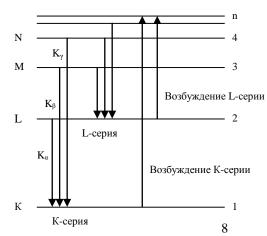


Рис.2. Схема переходов

квантовые числа, соответствующие энергетическим уровням, между которыми совершается электронный переход в атоме.

Длина волн излучаемых водородоподобными ионами с зарядовым числом ядра Z (число Z

определяется по номеру химического элемента в таблице Менделеева), могут быть рассчитаны по формуле:

$$\frac{1}{\lambda} = Z \cdot R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \tag{16}$$

Водородоподобными ионами называют атомы с одним электроном на внешней оболочке.

Рентгеновское излучение возникает при переходах на внутренних оболочках. Частоты и длины волн соответствующего излучения можно определить, используя закон Мозли:

$$v = R(Z - \sigma)^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2}\right),\tag{17}$$

$$\frac{1}{\lambda} = R' (Z - \sigma)^2 \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right), \tag{18}$$

где Z – порядковый номер элемента в системе Менделеева, R и R' – постоянные Ридберга для частот и длин волн (R=3,29·10¹⁵c⁻¹ и R'=1,10·10⁷ м⁻¹), n_1 – номер уровня, с которого переходит электрон, n_2 – номер уровня, на который переходит электрон. Величина σ учитывает экранировку внутренними электронами Кулоновского взаимодействия ядра и рассматриваемого электрона и называется постоянной экранирования.

Правила отбора для электромагнитных переходов:

$$\Delta j = 0, \pm 1;$$
 $\Delta m_i = 0, \pm 1;$ $\Delta \ell = \pm 1;$ $\Delta m_\ell = 0, \pm 1;$ $\Delta m_s = 0$

Элементы физики атомного ядра

Ядро химического элемента обозначается: ${}^{A}_{Z}X$, где X- символ химического элемента (например, для гелия – He); Z- зарядовое число ядра, которое равно числу протонов в ядре атома, или, что тоже самое, номеру химического элемента в таблице Менделеева; A- массовое число ядра, равное суммарному числу протонов и нейтронов в ядре атома;

 α - частица является ядром атома гелия ее полное обозначение $^4_2 He\,.$

 β - частица является электроном, испущенным ядром атома при радиоактивном распаде, ее полное обозначение $^0_{-1}e$. Протон и нейтрон соответственно имеют символы 1_1p ; 1_0n и т.д.

Радиус ядра может быть приближенно оценен по формуле:

$$R_{q} = 1.4 \cdot 10^{-15} A^{1/3} (M), \tag{19}$$

где A — массовое число ядра.

Дефект массы ядра определяется по формуле:

$$\Delta m = Zm_p + (A - Z)m_n - M_g, \qquad (20)$$

где Z иA – зарядовое и массовое числа ядра; m_p , m_n и M_s – соответственно массы протона, нейтрона и ядра атома.

Дефект массы ядра позволяет рассчитать энергию связи нуклонов в ядре (нуклон собирательный термин обозначающий как нейтрон так и протон):

$$E_{cs} = \Delta m \cdot c^2 \,. \tag{21}$$

Удельная энергия связи ядра определяет энергию связи, приходящуюся на один нуклон в ядре:

$$E = \frac{E_{cs}}{A} \tag{22}$$

Радиоактивность

Закон радиоактивного распада:

$$N = N_o e^{-\lambda t},\tag{23}$$

где N — число не распавшихся ядер к моменту времени t; N_o — число атомов радиоактивного элемента в начальный момент времени; λ

- постоянная распада (вероятность распада одного атома в течение одной секунды).

Распад ядер может характеризоваться, кроме постоянной распада, также периодом полураспада $\tau_{1/2}$ (т.е. временем распада половины атомов радиоактивного препарата) и средним временем жизни τ радиоактивного препарата. Связь между ними:

$$\tau_{\frac{1}{2}} = \frac{\ln 2}{\lambda}; \qquad \tau = \frac{1}{\lambda} \tag{24}$$

Активность радиоактивного препарата «A» определяется числом ядер, распавшихся в одну секунду:

$$A = \lambda N . (25)$$

Величина4 в системе СИ измеряется в беккерелях [Бк]. Беккерель соответствует одному распаду в секунду. Имеется внесистемная единица активности Кюри [Ки], которая соответствует $3.7 \cdot 10^{10}$ распадов/сек. (т.е. $3.7 \cdot 10^{10}$ Бк).

При радиоактивном равновесии выполняется соотношение:

$$\lambda_1 N_1 = \lambda_2 N_2 \,, \tag{26}$$

где индекс <1> относится к материнскому веществу, а индекс <2> - к дочернему.

При α - распаде происходит радиоактивное превращение, которое можно в общем случае записать следующим образом:

$${}_{z}^{A}X \rightarrow {}_{z-2}^{A-4}Y + {}_{2}^{4}He \tag{27}$$

При α - распаде запись будет:

$${}_{Z}^{A}X \to {}_{Z+1}^{A}Y + {}_{-1}^{0}e + {}_{o}^{0}\widetilde{V}$$
 (28)

где ${}^0_o \widetilde{\mathcal{V}}$ - антинейтрино, выбрасываемое ядром одновременно с β - частицей.

При электронном захвате радиоактивное превращение записывается в следующем виде:

$${}_{Z}^{A}X + {}_{-1}^{0}e \rightarrow {}_{Z-1}^{A}Y + {}_{0}^{0}\nu \tag{29}$$

При радиоактивном распаде выделяется энергия, которая может быть определена по балансу масс частиц, имеющихся до и после радиоактивного распада.

При α - распаде выделившаяся энергия будет:

$$E = c^2 \left\{ M_x - \left(M_y + m_\alpha \right) \right\} \tag{30}$$

где M_x , M_y - массы исходного (до распада) и образующихся ядер соответственно; m_{α} - масса α - частицы.

Замечание: в последнем соотношении можно вместо масс ядер использовать массы атомов: исходного, образующегося и атома гелия.

Выделившаяся при α - распаде энергия распределяется между α - частицей и ядром отдачи в соответствии с законом сохранения импульса и энергии.

При β - распаде выделившаяся энергия будет:

$$\Delta E = c^2 \left\{ M_x - \left(M_y + m_\beta \right) \right\} \tag{31}$$

где $M_x,\ M_y$ - массы исходного и образующихся при распаде ядер; m_β - масса - частицы.

Более рационально в последнем соотношении для расчётов использовать массы атомов, а не ядер. Выделившуюся энергию тогда определяют следующим образом

$$\Delta E = c^2 \left\{ M_x - M_y \right\} \tag{32}$$

Заметим, что масса β - частицы (электрона) в этом случае автоматически учитывается в M_y т.к. число электронов в этом атоме на один больше чем в исходном.

Возраст горной породы может быть рассчитан по формуле:

$$t = \frac{1}{\lambda} \ln \left\{ \frac{N_{\kappa OH}}{N_{\mu CX}} + 1 \right\} \tag{33}$$

где λ - постоянная распада исходного радиоактивного элемента; N_{ucx} ; $N_{кon}$ - соответственно число ядер долгоживущего радиоактивного элемента в анализируемом образце горной породы и число ядер стабильного конечного элемента, накопившегося в этом образце горной породы к моменту определения.

Длина пробега α - частиц в веществе:

$$R_{\alpha} \cong 4 \cdot 10^{-4} \cdot \frac{1}{\rho} E_{\alpha}^{\frac{3}{2}}$$
 (34)

где R_{α} - длина пробега в см.; ρ - плотность вещества в г/см³; E_{α} - начальная энергия α - частиц в МэВ.

Любая радиоактивная заряженная частица при движении в веществе ионизирует атомы и молекулы, причем на создание одной пары элементарных зарядов ион-электрон в среднем приближенно тратится 34 эВ энергии.

Вопросы для самоконтроля и проверки владения материалом

- 1. Какое состояние атома называется основным?
- 2. Что характеризуют главное, орбитальное и магнитное квантовые числа?
 - 3. Что называется спином электрона?
 - 4. Какие частицы называются бозонами?
 - 5. Какие частицы называются фермионами?
 - 6. Сформулируйте принцип Паули.
 - 7. Как распределяются электроны в атоме?

- 8. Как определяются заряд, размер и масса атомного ядра?
- 9. Что характеризуют массовое и зарядовое числа?
- 10. Расскажите о составе ядра.
- 11. Какова природа ядерных сил?
- 12. Что называется дефектом масс?
- 13. Как определяется энергия связи ядра?
- 14. Расскажите о закономерностях и происхождении α , β
- и γ излучения
- 15. Расскажите о реакции деления ядер, цепной реакции деления и реакции синтеза атомных ядер.

ЗАДАНИЯ ДЛЯ РАСЧЁТНО-ГРАФИЧЕСКИХ РАБОТ

Залача 1

- 1.1. Найдите наиболее вероятное расстояние электрона от ядра в состоянии \mathbf{n}_1 .
- 1.2. Определите максимальное число электронов, находящихся в состояниях, описываемых данным главным квантовым числом n_1 .
- 1.3. Определите модуль орбитального момента импульса электрона при заданном n_1 ;
- 1.4. Найдите все возможные проекции орбитального момента импульса электрона на направление внешнего магнитного поля, при заданном главном квантовом числе n_1 .

Какое максимальное число проекций момента импульса на направление внешнего магнитного поля возможно в этом случае?

- 1.5. Найдите модуль магнитного момента электрона $|\vec{P}_{\ell}|$
- 1.6. Определите все возможные проекции магнитного момента импульса электрона на направление внешнего магнитного поля P_{ℓ_z} , при заданном главном квантовом числе \mathbf{n}_1 .
- 1.7. Чему равен максимально возможный, при заданном \mathbf{n}_1 , полный момент импульса электрона \vec{J} ? Определите для этого случая \mathbf{g} —фактор Ланде

Задача 2

- 2.1. Определите частоту перехода $n_1 \rightarrow n_2$
- 2.2. Какой длины волны освобождается /(поглощается) фотон. К какому диапазону длин волн электромагнитного спектра он относится.
- 2.3. Постройте графическую зависимость в соответствии с заданием варианта.

Исходные данные для задач 1 и 2

Таблица 1

		- ' '			
Вариант	n_1	n_2	Z	Σ	Графические Зависимости
1	1	2	74	1	$ u(Z), \ \left \vec{L}_{\ell} \right (\ell) $
2	2	3	42	5,6	$v(n_1), \left \vec{P}_{\ell} \right (\ell)$
3	1	4	58	3,5	$V(n_2)$, r(n)
4	2	3	58	15,5	$ u(Z), \left ec{P}_{\ell} \right (\ell)$
5	1	3	40	1	$ u(n_1), \left \vec{L}_\ell \right (\ell) $
6	2	3	62	7,9	$V(n_2)$, r(n)
7	2	4	63	7,9	$\nu(Z), \left \vec{P}_{\ell} \right (\ell)$
8	2	3	64	7,9	$ u(n_1), \left \vec{L}_\ell \right (\ell) $
9	1	2	21	1,13	$v(n_2)$, r(n)

10	1	2	26	1,13	$ u(Z), \left ec{P}_{\ell} \right (\ell) $
11	1	∞	78	1	$ u(n_1), \left \vec{L}_\ell \right (\ell) $
12	1	3	24	1,13	$v(n_2)$, r(n)
Вариант	n_1	n_2	Z	Σ	Графические Зависимости
13	2	3	72	7,9	$ u(Z), \left \vec{P}_{\ell} \right (\ell) $
14	2	3	74	7,9	$ u(n_1), \left ec{L}_\ell \right (\ell) $
15	1	4	3	1	$v(n_2)$, r(n)
16	1	∞	37	1	$ u(Z), \left \vec{P}_{\ell} \right (\ell) $
17	1	2	11	1	$v(n_1), \left \vec{L}_{\ell} \right (\ell)$
18	1	2	47	1	$v(n_2)$, r(n)
19	2	4	55	7,5	$ u(Z), \left \vec{P}_{\ell} \right (\ell) $
20	2	3	55	7,5	$v(n_1), \left \vec{L}_{\ell} \right (\ell)$
21	2	3	47	7,5	$v(n_2)$, r(n)
22	2	3	76	7,9	$ u(Z), \left \vec{P}_{\ell} \right (\ell) $
23	2	3	29	7,5	$v(n_1), \left \vec{L}_{\ell} \right (\ell)$
24	1	2	29	1	$v(n_2)$, r(n)
25	1	2	23	1	$ u(Z), \left ec{P}_{\ell} \right (\ell) $
26	2	3	74	7,9	$ u(n_2), \left \vec{L}_\ell \right (\ell) $

27	1	2	22	1,13	$v(n_2)$, r(n)
28	1	2	23	1,13	$\nu(Z), \left \vec{P}_{\ell}\right (\ell)$
29	2	3	11	7,5	$ u(n_1), \left \vec{L}_{\ell}\right (\ell) $
30	1	2	1	1	$v(n_2)$, r(n)

Задача 3

Для элемента $_{Z}^{A}X$ определите:

- 3.1. Число протонов в ядре;
- 3.2. Число нейтронов в ядре;
- 3.3. Найдите радиус ядра этого элемента.
- 3.4. Вычислите энергию связи нуклонов в ядре.
- 3.5.Определите удельную энергию связи в ядре.

Задача 4

- 4.1. Вычислите среднее время жизни радиоактивного элемента $_{Z}^{A}X$
- 4.2. Сколько не распавшихся ядер осталось в 1 грамме исходного вещества осталось к моменту времени t
- 4.3. Вычислите активность исходного радиоактивного вещества.
- 4.4. Определите **с**колько α и β распадов произошло при превращении элемента $_{Z}^{A}X$ в элемент $_{Z-\Delta Z}^{A-\Delta A}Y$.
- 4.5. Определите с выделением или поглощением протекали эти реакции и величину энергии (выделившейся или поглощенной)

Таблица 2 Исходные данные для задач 3 и 4

				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	1210 70	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	дин эмди г в нг .	
Вар.	X	A	Z	Y	Α-ΔΑ	Z-ΔZ	Время t	Период полу- распада
1	N	13	7	О	13	8	15 мин	10мин

							10	10
2	Th	232	90	Bi	212	83	2,82*10 ¹⁰ лет	1,41*10 ¹⁰ лет
3	C	11	6	N	11	7	30,45мин	20,3мин
4	U	234	92	Bi	210	83	5*10 ⁵ лет	$2,5*10^5$ лет
5	Li	5	3	Н	1	1	2*10 ⁻²¹ сек	10 ⁻²¹ сек
6	Zn	71	30	Ga	71	31	1,2мин	2,4мин
7	Sr	90	38	Y	90	39	14,4года	28,8лет
Вар.	X	A	Z	Y	Α-ΔΑ	Z-ΔZ	Время t	Период полу- распада
8	Ra	226	88	Rn	222	86	808,5лет	1617лет
9	Po	210	84	Ra	206	82	69,185сут	138,37 сут
10	Pu	242	94	U	238	92	7,5*10 ⁵ лет	3,75*10 ⁵ лет
11	Co	60	27	Ni	60	28	3мин	1,5мин
12	Cu	64	29	Zn	64	30	6,4ч	12,8ч
13	Nd	144	60	Ce	140	58	2,5*10 ¹⁵ лет	5*10 ¹⁵ лет
14	Rn	222	86	Po	218	84	1,915сут	3,83 сут
15	Po	214	84	Pb	210	82	3,28*10 ⁻⁴ сек.	1,64*10 ⁻⁴ сек.
16	Bi	214	83	Po	214	84	39,95мин	19,9 мин
17	U	235	92	Th	231	90	14,2*10 ⁸ лет	7,1*10 ⁸ лет
18	Po	210	84	Pb	206	82	276сут	138сут
19	Cs	137	55	Ва	137	56	45лет	30 лет
20	Pb	214	82	Bi	214	83	53,6мин	26,8 мин
21	О	15	8	N	15	7	248c	124 c
22	Pa	238	91	U	238	92	4,54мин	2,27мин.
23	Th	232	90	Pb	208	82	0,995*10 ¹⁰ лет	1,99*10 ¹⁰ лет
24	U	238	92	Pb	206	82	9*10 ¹⁰ лет	4,5*10 ¹⁰ лет
25	Rb	88	37	Sr	88	38	9*10 ¹⁰ лет	6*10 ¹⁰ лет
26	P	30	15	Si	30	14	5мин	2,5 мин

27	Th	232	90	Ra	228	88	0,695*10 ¹⁰ лет	1,39*10 ¹⁰ лет
28	U	238	92	Th	234	90	9*10 ¹⁰ лет	4,5*10 ¹⁰ лет
29	C	14	6	N	14	7	11400лет	5700лет
30	Н	3	1	Не	3	2	24.4года	12,2года

ПРИМЕР РЕШЕНИЯ ЗАДАЧИ

Вариант 30 Задача 1

1.1. Наиболее вероятное расстояние электрона от ядра в состояниисзаданным попределяется по формуле:

Подставим заданные по условию варианта значения n_1 =1 и Z=1

$$r_{1} = \frac{4\pi\varepsilon_{0}\hbar^{2}}{m_{e}Ze^{2}}n^{2} = \frac{4\pi\cdot8.85\cdot10^{-12}\frac{\Phi}{M}\cdot(1.06\cdot10^{-34}\cancel{\square}\cancel{\cancel{\square}\cancel{\square}\cancel{\square}}\cdot c)^{2}}{9.1\cdot10^{-31}\kappa\cancel{\cancel{\square}\cancel{\square}}\cdot(1.6\cdot10^{-19}\cancel{\cancel{N}\cancel{\square}})^{2}}1^{2} = 5.36\cdot10^{-11}\cancel{\cancel{N}}$$

1.2. Максимальное число электронов, находящихся в состояниях, описываемых заданным главным квантовым числом n_1 =1:

$$N = 2n^2 = 2$$

1.3. Модуль орбитального момента импульса электрона определяется:

$$\left| \vec{L}_{\ell} \right| = \hbar \sqrt{\ell (\ell + 1)}$$

Орбитальное квантовое число ℓ может принимать значения: 0,1,2...n-1. Так какn=1, то орбитальное квантовое число может иметь только одно значение, равное нулю. Тогда:

$$\left|\vec{L}_{\ell}\right| = \hbar\sqrt{\ell(\ell+1)} = 1,06 \times 10^{-34} \, \text{Дж} \cdot c\sqrt{0(0+1)} = 0 \, \text{Дж} \cdot c$$

Электрон на первом уровне находится в S – состоянии.

1.4. Проекция момента импульса на любую ось (z) тоже может принимать лишь значения:

$$L_{\ell z} = m_{\ell} \hbar$$
,

где магнитное квантовое число может принимать значения m_{ℓ} =0, ± 1 , ± 2 , ..., $\pm \ell$. Прип=1, ℓ =0 следовательно m_{ℓ} =0 и проекция орбитального момента импульса электрона равна 0. В этом случае максимальное число проекций момента импульса будет:

$$L_{\ell_{\tau}} = 0 \cdot \hbar = 0.$$

1.5. Модуль магнитного момента электрона $\left| \vec{P}_{\ell} \right|$ определяется:

$$\left| \vec{P}_{\ell} \right| = \mu_B \sqrt{\ell(\ell+1)} = \mu_B \sqrt{0(0+1)} = 0$$

Так как магнитный момент зависит от орбитального квантового числа, а при заданных условиях $\ell=0$, то и модуль магнитного момента также равен нулю.

1.6. Проекции магнитного момента импульса электрона на направление внешнего магнитного поля P_{ℓ_z} , определяются:

$$P_{\ell z} = -\mu_B m_\ell$$

Так какпроекции магнитного момента импульса электрона определяются магнитным квантовым числом, а оно принимает значениет =0, то проекциямагнитного момента импульса электрона также будет равна 0.

1.7. Модуль полного момента импульса электрона \vec{J} : $\left|\vec{J}\right| = \hbar \sqrt{j(j+1)}$, где j — квантовое число полного момента импульса, которое может иметь значения: $j = |\ell \pm s|$. Спиновое число для электрона может принимать два значения: $s = \pm \frac{1}{2}$. При $n_1 = 1$, $\ell = 0$ и $s = \pm \frac{1}{2}$ получим:

$$j = |\ell \pm 1/2| = |0 \pm 1/2| = \frac{1}{2},$$
$$|\vec{J}| = \hbar \sqrt{j(j+1)} = 1,06 \cdot 10^{-34} \sqrt{\frac{1}{2} \left(\frac{1}{2} + 1\right)} = 0,92 \cdot 10^{-34} \, \text{Джc} \cdot c$$

g- фактор Ланде определяется:

$$g = 1 + \frac{j(j+1) + s(s+1) - \ell(\ell+1)}{2j(j+1)} = 1 + \frac{\frac{1}{2}(\frac{1}{2}+1) + \frac{1}{2}(\frac{1}{2}+1) - 0(0+1)}{2\frac{1}{2}(\frac{1}{2}+1)} = 2$$

1.8. Построение графических зависимостей, r(n) , $v(n_2)$

$$1.8.1. \ r_n = \frac{4\pi\varepsilon_0\hbar^2}{m_eZe^2}n^2 = \frac{4\cdot 3.14\cdot 8.85\cdot 10^{-12}\cdot (1.05\cdot 10^{-34})^2}{9.1\cdot 10^{-31}\cdot 1\cdot (1.6\cdot 10^{-19})^2}\cdot n^2$$

r, M

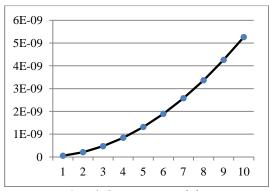


Рис. 3. Зависимость r(n)

1.8.2.
$$v = R' \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = 3,29 \cdot 10^{15} \left(\frac{1}{1^2} - \frac{1}{n_2^2} \right)$$

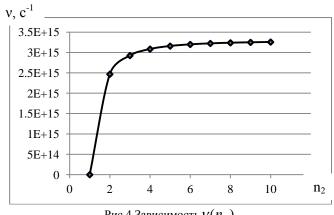


Рис.4 Зависимость $\nu(n_2)$

Задача 2

2.1. Определение частоты перехода $n_1 \rightarrow n_2$ Так как по условию варианта задан атом водорода, то воспользуемся формулой Бальмера, для $n_1 = 1$ й $n_2 = 2$:

$$v = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) = 3,29 \cdot 10^{15} \cdot \left(\frac{1}{1} - \frac{1}{4} \right) = 2,47 \cdot 10^{15} \,\mathrm{c}^{-1}$$

2.2. Определение длины волны фотона.

$$\lambda = \frac{c}{v} = \frac{3 \cdot 10^8 \,\text{m/c}}{2,47 \cdot 10^{15} c^{-1}} = 1,22 \cdot 10^{-7} \,\text{m}$$

Данная длина волны относится к ультрафиолетовому спектру электромагнитного излучения.

Задача 3

Исходные данные:

Исходный элемент $_Z^A X$ по заданию это $_1^3 H$ — тритий. Его массовое число: A=3, порядковый номер в таблице Менделеева: Z=1 Элемент, образовавшийся в результате реакции: $Y=\frac{_3}{_2}He$ —гелий. Его массовое число: $A-\Delta A=3$, порядковый номер в таблице Менделеева: $Z-\Delta Z=2$ Теоретически возможна реакция превращение в ядре трития

Теоретически возможна реакция превращение в ядре трития нейтрона в протон: ${}_{1}^{3}H \rightarrow {}_{2}^{3}He + {}_{-1}^{0}\beta$

- $_{-1}^{0}\beta$ распад сопровождается выбросом антинейтрино, в этом случае реакция имеет вид: $_{1}^{3}H \rightarrow _{2}^{3}He + _{-1}^{0}\beta + _{0}^{0}\widetilde{\nu}$
- 3.1. Число протонов в исходном ядре: P=Z=1
- 3.2. Число нейтронов в исходном ядре: N=A-Z=3-1=2
- 3.3. Радиус ядра элементазависит от массового числа:

$$r = 1.4 \cdot 10^{-15} A^{\frac{1}{3}} M = 1.4 \cdot 10^{-15} \cdot 1^{\frac{1}{3}} = 1.4 \cdot 10^{-15} M$$

3.4. Энергии связи нуклонов в ядре определяется:

$$E_{ce} = \Delta m \cdot c^2$$
, где $\Delta m = \{ Zm_p + (A - Z)m_n \} - m_g \}$

Тогда, при заданных условиях:

$$E_{ce} = 9 \cdot 10^{16} \cdot \{ [1 \cdot 1,673 + (3-1) \cdot 1,675] - 3,0161 \} \cdot 10^{-27} = 1,8062 \cdot 10^{-10} \, \text{MHz} \approx 1,13 \cdot 10^9 \, \text{9B}$$

3.5.Определение удельной энергии связи ядра.

$$E=rac{E_{cs}}{A}=rac{1,\!8062\!\cdot\!10^{-10}}{3}=6,\!021\!\cdot\!10^{-11}$$
Джс / нуклон

Задача 4

4.1. Вычисление времени жизни радиоактивного элемента $_{Z}^{A}X$. Период полураспада по условию варианта - 12,2 года \approx 3,85 \cdot 10 ^{8}c

$$\tau = \frac{1}{\lambda}$$
; $\tau = \frac{\tau_{1/2}}{\ell n 2} = \frac{3,85 \cdot 10^8}{0,693} = 5,6 \cdot 10^5 c$

4.2. Определим, сколько не распавшихся ядер осталось в 1 грамме исходного вещества осталось к моменту времени t=24,4 года.

$$N = N_0 \cdot e^{-\frac{t}{\tau}} = \frac{m \cdot N_A}{M} \cdot e^{-\frac{t}{\tau}} = \frac{10^{-3} \cdot 6,02 \cdot 10^{23}}{3 \cdot e^2} \approx 2,71 \cdot 10^{19} \text{ атомов}$$

4.3. Вычисление активности исходного радиоактивного вещества:

$$A = \lambda N = \frac{N}{\tau} = \frac{N_0 \cdot e^{-\frac{t}{\tau}}}{\tau} = \frac{2,71 \cdot 10^{19}}{5,6 \cdot 10^5} = 4,8 \cdot 10^{13} \, \text{K}$$

4.4. Определение количества α - и β - распадов произошедших при превращении элемента $_{Z}^{A}X$ в элемент $_{Z-\Delta Z}^{A-\Delta A}Y$.

По условию A=3 и A- Δ A=3, следовательно массовое число не изменилось, Z=1 и Z- Δ Z=2 – зарядовое число увеличилось на единицу. Это возможно при одном β распаде.

4.5. Определение величины энергии реакции (выделившейся или поглощенной)

$$\begin{split} \Delta E &= c^2 \left\{ \! M_x - M_y \right\} \! = c^2 \left\{ \! M_{_1_H}^3 - (M_{_2_{He}}^3 + m_\beta) \right\} \! = \\ &= (3 \cdot 10^8)^2 (3,\!01605 \! - (3,\!01605 \! + 0,\!0009)) \cdot 1,\!67 \cdot 10^{-27} \approx \\ &\approx -1,\!37 \cdot 10^{-13} \, \text{Дж} \end{split}$$

Так как знак энергии реакции отрицательный, реакция идёт с поглощением энергии.

ПРИЛОЖЕНИЯ ОСНОВНЫЕ ФИЗИЧЕСКИЕ ПОСТОЯННЫЕ

Физическая величина	Численное значение
Скорость света в вакууме	$c=2,9979250(10) \cdot 10^8 \text{ m/c}$
Постоянная Больцмана	$k = 1,3807 \cdot 10^{-23} \text{Дж/K}$
Элементарный заряд	$e = 1,602 \cdot 10^{-19} Kл$
Масса электрона	$m_e = 0.911 \cdot 10^{-30} \text{ кг} = 0.511 \text{ МэВ}$
Удельный заряд электрона	$e/m_e = 1,76 \cdot 10^{11} \text{ Кл/кг}$
Масса протона	$m_p = 1,672 \cdot 10^{-27} \text{ кг}$
Удельный заряд протона	$e/m_p = 0.959 \cdot 10^8 \text{ K}_{\text{Л}}/\kappa\Gamma$
Постоянная Планка	$h = 6,626 \cdot 10^{-34} \text{Дж} \cdot \text{с}$
Постоянная планка	$\hbar = h/2\pi = 1,0546 \cdot 10^{-34}$ Дж·с = 0,659·10 ⁻¹⁵ эВ·с
Постоянная Ридберга	$R = 3,29 \cdot 10^{15} c^{-1}$
постоянная гидосрга	$R' = 1,10 \cdot 10^7 \mathrm{m}^{-1}$
Первый боровский радиус	$a = 0.529 \cdot 10^{-10} \text{ M}$
Энергия связи электрона в Н2	E = 13,56 pB
Классический радиус электрона	$r = 2,82 \cdot 10^{-15} \text{ M}$
Атомная единица массы	1 а.е.м. = 1,660 · 10 ⁻²⁷ кг
Электрическая постоянная	$\varepsilon_0 = 8.85 \cdot 10^{-12} \Phi \cdot \text{M}^{-1}$
Магнитная постоянная	$μ_0 = 1,257 \cdot 10^{-6} \text{ГH/M}, μ_0 / (4 π) = 10^{-7} \text{ΓH/M}$

БИБЛИОГРАФИЧЕСКИЙ СПИСОК УЧЕБНОЙ ЛИТЕРАТУРЫ

1. Савельев И.В. Курс физики. Т.3, М.: Лань, Т. 3., 2008

2. Детлаф А.А., Курс физики. /Детлаф А.А,.Яворский Б.М. М.: Высшая школа, 2009.

СОДЕРЖАНИЕ

Рекомендации к выполнению расчётно-графических работ	·····3
Теоретические основы квантовой механики	5
Задания для расчётно-графических работ	17
Пример решения задачи	19
Приложения	
Список рекомендуемой учебной литературы	24