ЛАБОРАТОРНАЯ РАБОТА 14 MS Excel. Решение нелинейных уравнений и определенных интегралов

Цель работы: Изучение возможностей пакета MS Excel при решении нелинейных уравнений; приобретение навыков решения определенных интегралов.

Задание 1. Найти корни уравнения: $x - x^3 + 4 = 0$ на отрезке [1,2].

1. Для начала решим уравнение **графически**. Известно, что графическим решением уравнения f(x)=0 является точка пересечения графика функции f(x) с осью абсцисс, т.е. такое значение **x**, при котором функция обращается в **ноль**.

<u>Построим в MS Excel график функции</u> $f(x) = x - x^3 + 4$ на заданном отрезке [1,2].

- Для этого построим таблицу, в первом столбце которой значения *x* от 1 до 2 с шагом 0,05; а во втором столбце значения функции, вычисленные по формуле
 - $= \mathbf{x} \mathbf{x}^3 + \mathbf{4}$
- Затем с помощью мастера диаграмм строим *точечный* график заданной функции (рис. 1).
- Из графика видно, что на указанном интервале есть один корень уравнения (в интервале от 1,5 до 2).

Рис. 1. Таблица значений и график функции

- 2. Теперь можно уточнить корень полинома. Для этого выполним следующие действия:
- В ячейку А25 введем приближенное значение корня, например, значение 1,5 (рис.1).
- В ячейку **B25** введем функцию **f**(**x**), ссылаясь на ячейку **A25**: =**A25** -**A25**^3 + 4.
- Активируем надстройку Подбор параметра: Данные / Работа с данными / Анализ "что-если" / Подбор параметра и заполним диалоговое окно следующим образом (см. рис. 2):
- в поле Установить в ячейке введем ссылку на ячейку с формулой (ячейка В25),

- в поле Значение - ожидаемый результат (0),

- в поле **Изменяя значения ячейки** - ссылку на ячейку, в которой будет храниться значение подбираемого параметра **x** (в нашем случае – это ячейка **A25**).

Подбор параметра	X
Установить в <u>я</u> чейке:	B25
Зна <u>ч</u> ение:	0
Изменяя значение ячейки:	\$A\$25
ОК	Отмена

Рис. 2. Диалоговое окно Подбор параметра

После нажатия кнопки **ОК** появится диалоговое окно **Результат подбора параметра** (рис. 3) с сообщением об успешном завершении поиска решения, приближенное значение корня будет помещено в ячейку **A25**.

юдбор параметра для чешение найлено.	я ячейки В25.	ОК
одбираемое значение	: 0	Отмена
екущее значение:	0,000353807	Шаг
		Пауза

Рис. 3. Результат подбора параметра

В результате в ячейке А25 по	лучим точное
решение нелинейного уравнения:	x=1,79628

		A	В
ſ			значение
	24	корень	функции
	25	1,79628114	0,00035381

ВАРИАНТЫ ЗАДАНИЯ 1

<u>Задание 1.</u> Постройте в MS Excel график нелинейной функции f(x) = 0 на заданном отрезке [a,b] согласно варианту (см. табл. 1). Найдите корень нелинейного уравнения на заданном отрезке (через подбор параметра).

№ вар-та	Уравнение	а (нач. знач.)	в (конеч. знач.)
1	$\mathbf{x} - \mathbf{x}^3 + 1 = 0$	1	2
2	$\mathbf{x} - \mathbf{x}^3 + 3 = 0$	1	2
3	$2\mathbf{x} + \mathbf{x}^5 - 1 = 0$	0	1
4	$1 + x^3 - x = 0$	-2	0
5	$1 - 3x + x^3 = 0$	0	1
6	$1 - 3x + x^4 = 0$	0	1

№ вар-та	Уравнение	а (нач. знач.)	в (конеч. знач.)
7	$1 - 3x + x^5 = 0$	0	1
8	$\mathbf{x} - \mathbf{x}^3 + 2 = 0$	1	2
9	$\mathbf{x} - \mathbf{x}^3 + 5 = 0$	1	2
10	$2 - x + x^3 = 0$	-2	0
11	$1-5x+x^3=0$	0	1
12	$1-5x+x^4=0$	0	1
13	$1-3x+x^5=0$	1	2
14	$x^{3}-x-5=0$	1	2
15	$x^3 - x + 1 = 0$	-2	0

<u>Задание 2.</u> Решить трансцендентное уравнение $e^x - (2x - 1)^2 = 0$

Решение:

1. Построим график функции $f(x) = e^x - (2x - 1)^2$ на интервале [-5, 5] (рис. 4).

Рис. 4. Графическое решение уравнения

Из графика видно, что данное уравнение имеет два решения. Одно из них: x=0

Для второго решения можно определить интервал изоляции корня: 1 < x < 2. Теперь можно найти корень уравнения на отрезке [1, 2] методом последовательных приближений.

2. Введём в ячейку **H17** начальное приближение (**1**), в ячейку **I17** введем само уравнение, со ссылкой на начальное приближение: **=EXP (H17) - (2*H17-1)^2** (см. рис. 4).

Далее воспользуемся вкладкой Данные→Поиск решения и заполним диалоговое окно Поиск решения (см. рис.5).

Установить целевую ячейку:	\$I\$17	<u>В</u> ыполнить
Равной: 🔘 <u>м</u> аксимальному зна	ачению 🧿 значению: 0	Закрыть
Минимальному зна Изменяя ячейки:	чению	

Рис. 5. Окно Поиск решения

Результат поиска решения будет выведен в ячейку **H17** (см. рис. 6).

16	Douroundour		4 620055	
10	F	G	H	

Рис. 6. Результат решения уравнения

Следовательно, вторым корнем уравнения e^{x} - (2x-1)²=0 будет значение x=1,629

Варианты задания 2

Задание 2. Найти корни трансцендентного уравнения f(x) = 0

№ варианта	f(x)
1	$2x^2 - 3\ln x + 0.1 - 6$
2	$2\sin(x) - x^2 + 10$
3	$e^{0,3x} + x^2 - 7x$
4	$\cos\left(\frac{x}{5}\right) - \ln\left x - 0, 1\right + 1$
5	$\sin(2x) - e^{-0.7x} + 20$
6	$arctgx - \frac{1}{3x^3}$
7	$x \lg(x+1) - 1$
8	$\sin\left(x+\frac{\pi}{3}\right) - 0.5x$
9	$e^{-2x} - 2x + 1$
10	arctg(x-1)+2x
11	$\sqrt{x+1} - \frac{1}{x}$
12	$3x + \cos x + 1$
13	$x - \sqrt{\lg(x+2)}$
14	$x^2 - \ln(x+1)$
15	2arctgx - x + 3

Задание 3. Вычислить определенный интеграл

 $y = \int_{1}^{3} \frac{1}{\ln x} dx$ методом трапеций:

Примечание. Геометрический смысл нахождения определенного интеграла заключается в вычислении площади фигуры на заданном отрезке [a, b], ограниченной линией, уравнение которой задано, и осью ОХ.

Согласно методу трапеций:

$$\int_{a}^{b} f(x)dx \approx f(x_{0})\frac{h}{2} + \sum_{i=1}^{n-1} f(x_{i})h + f(x_{n})\frac{h}{2}$$

Решение:

- 1. В ячейки A7:A22 вводим значения аргумента x от 2 до 5 с шагом 0,2 (рис. 7)
- 2. В ячейках В7:В22 вычислим соответствующие значения подынтегральной функции *c(*)

$$f(x) = \frac{1}{\ln x}$$

3. В ячейке C7 вычислим значение $f(x_0) * h/2$; в ячейке C22 вычислим $f(x_n) * h/2$ (где $x_0 = a$; x_n=b; h - шаг)

- 4. В остальных ячейках **C8:C21** вычислим значения f(x)*h
- 5. В ячейке С23 вычислим сумму ячеек С7:С22.

В результате получим приближённое значение искомого интеграла (2,593).

6. Далее построим точечный график функции f(x) на заданном отрезке.

7. Выделив график, изменим тип диаграммы: «С областями» (см. рис. 7).

Рис. 7. Результат вычисления определенного интеграла

Таким образом, площадь фигуры, ограниченная функцией [2, 5] равняется 2,593

 $\frac{1}{\ln x}$ и осью *ОХ*, на отрезке

Варианты задания 3

Задание 3. Вычислить определенный интеграл $y = \int_{a}^{b} f(x) dx$ методом трапеций.

Шаг подберите самостоятельно так, чтобы количество отрезков было не менее 15.

№ варианта	а	b	f(x)
1	0,8	1,6	$\frac{1}{\sqrt{2x^2 + 1}}$
2	1,6	2,4	$(x+1)\sin x$
3	0,8	1,2	$\frac{\sin(2x)}{x^2}$
4	0,8	1,6	$\frac{\lg(x^2+1)}{x}$
5	0,4	1,2	$\sqrt{x}\cos(x^2)$
6	0,4	0,8	$\frac{tg(x^2 + 0,5)}{1 + 2x^2}$
7	0,15	0,63	$\sqrt{x+1} \lg(x+3)$
8	1,2	2,8	$\left(\frac{x}{2}+1\right)\sin\left(\frac{x}{2}\right)$
9	0,6	0,72	$(\sqrt{x}+1)tg 2x$
10	0,8	1,6	$(x^2+1)\sin(x-0,5)$
11	1,6	3,2	$\frac{x}{2} lg\left(\frac{x^2}{2}\right)$
12	0.8	1,7	$\frac{1}{\sqrt{2x^2 + 0.3}}$
13	1,3	2,1	$\frac{\sin(x^2-1))}{2\sqrt{x}}$
14	0,8	1,2	$\frac{\sin\left(x^2-0,4\right)\right)}{x+2}$
15	0,8	1,2	$\frac{\cos x}{x^2 + 1}$

ПОСЛЕ ВЫПОЛНЕНИЯ ВСЕХ ЗАДАНИЙ ОФОРМИТЕ ОТЧЕТ В MS WORD С ФОРМУЛИРОВКОЙ ЗАДАНИЙ И РЕЗУЛЬТАТАМИ РАСЧЕТОВ.