ПЕРВОЕ ВЫСШЕЕ ТЕХНИЧЕСКОЕ УЧЕБНОЕ ЗАВЕДЕНИЕ РОССИИ

МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРА-ЦИИ

федеральное государственное бюджетное образовательное учреждение высшего образования «САНКТ-ПЕТЕРБУРГСКИЙ ГОРНЫЙ УНИВЕРСИТЕТ»

Кафедра физической химии

Допущены

к проведению занятий в 2018-2019 уч.году Заведующий кафедрой профессор

О.В. Черемисина

«30» августа 2018 г.

УЧЕБНО-МЕТОДИЧЕСКИЕ МАТЕРИАЛЫ ДЛЯ САМОСТОЯТЕЛЬНОЙ РАБОТЫ СТУДЕНТОВ подготовка к практическим занятиям по учебной дисциплине

«ФИЗИЧЕСКАЯ ХИМИЯ»

Направление подготовки: 18.03.01 Химическая технология

Направленность (профиль): Химическая технология природных энергоносителей и угле-

родных материалов

Химическая технология неорганических веществ

Программа: академический бакалавриат

Форма обучения: очная

Составитель: д.т.н. Литвинова Т.Е.

Обсуждены и одобрены на заседании кафедры физической химии

Протокол №1 от 30 августа 2018 г.

САНКТ-ПЕТЕРБУРГ 2018

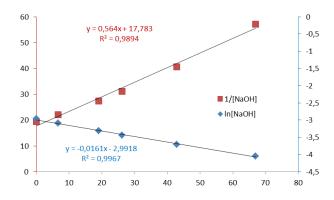
1. Формальная кинетика

1.1. Краткие теоретические сведения

1.2. Примеры решения задач

Пример 1. При щелочном гидролизе аллилхлорида: $C_3H_5CI + NaOH = C_3H_5OH + NaCI$ получили зависимость концентрации щелочи от времени при избыточном содержании аллилхлорида

Определить порядок реакции по реагентам и общий порядок реакции; вычислить константу скорости реакции (порядок реакции по обоим веществам одинаков).


Решение

При избыточной концентрации одного из реагентов определяют порядок реакции по нему. Общий порядок реакции вычисляют как сумму порядков по каждому из реагентов

Применение графического метода. Строят зависимости в координатах InC = f(t), 1/C = f(t). Зависимости аппроксимируют линейной функцией. По угловому коэффициенту определяют константу скорости реакции

Данные для построения графических зависимостей:

t, h	0	6,6	19	26,2	42,8	66,9
[NaOH], mol/l	0,0515	0,0454	0,0365	0,0321	0,0246	0,0175
ln[NaOH]	-2,966	-3,092	-3,310	-3,439	-3,705	-4,046
1/[NaOH]	19,417	22,026	27,397	31,153	40,650	57,143
График:						

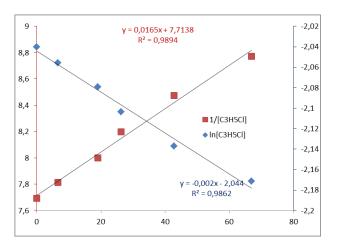
Линейной является зависимость в логарифмических координатах (см. R^2), следовательно, по реагентам порядок реакции равен 1, суммарный порядок реакции равен 2.

Одного метода определения порядка и константы скорости мало. Применяют метод подстановки

t, h	0	6,6	19	26,2	42,8	66,9
[NaOH], mol/l	0,0515	0,0454	0,0365	0,0321	0,0246	0,0175
k(n=1)		0,019	0,018	0,018	0,017	0,016
k(n=2)		0,395	0,420	0,448	0,496	0,564

Более-менее постоянное значение k получается при расчете по формуле первого порядка реакции. Среднее значение 0,017

По результатам обоих методов: по компоненту порядок реакции равен 1, суммарный порядок равен 2, константа скорости 0,0165 – как среднее по двум методам.


Пример 2. При щелочном гидролизе $C_3H_5CI + NaOH = C_3H_5OH + NaCI получили зависимость концентрации <math>C_3H_5CI$ от времени при одинаковом содержании реагентов. Определить порядок реакции; вычислить константу скорости реакции (порядок реакции по обоим веществам одинаков).

Решение

При одинаковой концентрации реагентов определяют общий порядок реакции графическим методом и/или методом подстановки

По совокупности методов получается второй порядок реакции со средней константой около 0,0165.

t, h	0	6,6	19	26,2	42,8	66,9
$[C_3H_5Cl]$, mol/l	0,13	0,128	0,125	0,122	0,118	0,114
$ln[C_3H_5Cl]$	-2,040	-2,056	-2,079	-2,104	-2,137	-2,172
$1/[C_3H_5Cl]$	7,692	7,813	8,000	8,197	8,475	8,772
k(n=1)		0,002	0,002	0,002	0,002	0,002
k(n=2)		0,018	0,016	0,019	0,018	0,016

1.3. Задачи для решения

1. Для реакции разложения йодистого водорода $2HI = H_2 + I_2$, протекающей в газовой фазе, по зависимости массы образовавшегося йода от времени определите порядок и константу скорости реакции, составьте кинетическое уравнение. За какое время будет получено 10 г йода? Какая масса йода выделится через полторы минуты от начала процесса?

<i>t</i> , c	10	20	40	60	70	∞
$m(I_2)$, Γ	1,02	2,00	3,89	5,66	6,50	10,41

2. Для реакции разложения хлористого этила $C_2H_5Cl_{(\Gamma)}=C_2H_{4(\Gamma)}+HCl_{(\Gamma)}$ при температуре 477 °C и давлении 1 атм. по зависимости общего объёма от времени определите порядок и константу скорости реакции, составьте кинетическое уравнение. Вычислите время, за которое прореагирует 50 % хлористого этила. Какой объём этилена будет получен через час от начала процесса?

<i>t</i> , мин.	1	2	3	4	8	16	8
V_{Σ} , л	6,3	6,45	6,59	6,73	7,26	8,18	12,3

3. При изучении реакции гидролиза этилбромида $C_2H_5Br + H_2O = C_2H_5OH + HBr$ в спиртовом растворе отбирали пробы объёмом 10 мл, титровали их раствором гидроксида натрия концентрацией 0,1 экв./л и получили зависимость объёма щелочи от времени. Определите порядок реакции и константу скорости гидролиза этилбромида. Вычислите степень превращения этилбромида в состоянии равновесия и время, за которое оно наступит. Какое количество вещества этанола получится через трое суток от начала процесса, если на реакцию взято 1,5 кг бромистого этила и эквимолярное количество воды?

t, ч 4 10 27 67 117 167 ∞ $V_{\text{NaOH, MJI}}$ 2,18 5,06 11,75 21 26,9 29,4 31,13

4. При изучении реакции разложения хлористого сульфурила $SO_2Cl_{2(r)} = SO_{2(r)} + Cl_{2(r)}$ при температуре 350 °C и давлении 1 атм. получили зависимость общего объёма от времени. Определите порядок реакции и константу скорости реакции. Какой объём хлора выделится через 6 часов от начала реакции? Какая масса хлористого сульфурила останется через 8 часов от начала процесса? Какое время потребуется для разложения $98,5 \% SO_2Cl_2$?

t, мин.03060120180240300 V_{Σ} , л58,3560,6262,7966,9070,6974,1977,43

5. При исследовании реакции омыления этилацетата гидроксидом натрия отбирали пробы объёмом 10 мл, к каждой из которых добавляли по 10 мл раствора соляной кислоты концентрацией 0,05 моль/л и титровали раствором гидроксида калия концентрацией 0,05 моль/л. Получили зависимость объёма титранта от времени. Определите порядок реакции и константу скорости реакции, если эфир и щелочь были взяты в эквимолярном соотношении. За какое время прореагирует 98 % эфира? Какова остаточная концентрация эфира через час от начала реакции?

 t, мин.
 5
 10
 15
 20
 25
 30

 V_{КОН}, мл
 5,58
 7,16
 7,91
 8,34
 8,63
 8,83

6. При изучении реакции омыления этилацетата щелочью при эквимолярных количествах реагентов отбирали пробы раствора объёмом 10 мл и получили зависимость объема раствора соляной кислоты концентрацией 0,01 н. (титрант) от времени. Определите порядок реакции и константу скорости реакции. За какое время на титрование расходуется 1,5 мл кислоты? Какой степени превращения эфира соответствует этот объём титранта? Вычислите концентрацию эфира через 30 минут от начала реакции.

<i>t</i> , мин.	0	5	10	24	∞
$V_{ m T}$, мл	6,2	5,05	4,25	2,95	1,5

7. При изучении кинетики разложения пятиокиси азота по реакции $2N_2O_5 = 4NO_2 + O_2$ в четырёххлористом углероде при температуре 40 °C получили зависимость объёма выделившегося кислорода, который в CCl_4 растворим плохо, от времени. Определите порядок реакции и константу скорости реакции. Рассчитайте объём кислорода, который выделится за 150 минут от начала процесса и время, за которое разложится 98 % пятиокиси азота.

<i>t</i> , мин.	20	40	60	80	100	∞
$V(O_2)$, л	11,4	19,9	23,9	27,2	29,5	37,5

8. При исследовании газофазного разложения пятиокиси азота по реакции $2N_2O_5 = 4NO_2 + O_2$ при температуре 67 °C в изохорных условиях получили зависимость общего давления от времени. Определите порядок реакции и константу скорости реакции. Вычислите, сколько двуокиси азота получится через 10 минут от начала реакции, время, за которое реакция пройдет на $\frac{1}{4}$ и время, за которое разложится 95 % пятиокиси азота.

<i>t</i> , мин.	1	2	3	4	5	8
P_{Σ} , атм.	1,21	1,47	1,65	1,78	1,87	2,09

9. При исследовании разложения пятиокиси азота по реакции $2N_2O_5 = 2N_2O_4 + O_2$ в четырёххлористом углероде при температуре 40 °C получили зависимость степени превращения N_2O_5 от времени. Определите порядок реакции и константу скорости реакции. Вычислите время, за которое разложится 95 % пятиокиси азота и степень превращения через сутки от начала реакции.

<i>t</i> , мин.	82	162	409	604	1129	1721	1929
α, %	5,44	10,32	23,83	36,96	55,53	70,54	74,48

10. При исследовании разложения паров диметилового эфира при температуре 30 °C на метан, угарный газ и водород в изохорных условиях получили зависимость общего давления от времени (объём принять 1 л). Определите порядок реакции и константу скорости реакции. Вычислите время, за которое начальное давление увеличится в 2 раза.

 t, c
 219
 299
 564
 ∞

 P_{Σ} , MM pt. ct.
 954
 1054
 1198
 1258

11. При исследовании разложения 1 л паров ацетона при температуре 507 °C в изохорных условиях с образованием этилена, водорода и угарного газа получили зависимость общего давления от времени. Определите порядок реакции и константу скорости реакции. Вычислите время, за которое начальное давление увеличится в 2 раза и объём угарного газа, образующийся через 40 минут.

 t, c
 390
 777
 1195
 3155
 ∞

 P_{Σ} , MM pt.ct.
 408
 488
 562
 779
 931

12. При исследовании разложения 1 л паров ацетона при температуре 507 °C в изохорных условиях с образованием этана и угарного газа получили зависимость общего давления от времени. Определите порядок реакции и константу скорости реакции. Вычислите время, требуемое для разложения 70 % ацетона и объём этана, образующийся через час от начала процесса.

 t, мин.
 10
 20
 40
 80
 160
 ∞

 P_{Σ} , атм.
 0,46
 0,49
 0,55
 0,64
 0,75
 0,83

13. При исследовании реакции окисления формальдегида перекисью водорода, взятой в эквимолярном количестве, при температуре 60 °C, получили зависимость расхода 0,1 н. раствора щелочи, требуемого на титрование проб реакционной смеси объёмом 5 мл, от времени. Определите порядок реакции и константу скорости реакции. Вычислите, время, при котором степень превращения формальдегида составит 90 % для эквимолярных количеств реагентов. Рассчитайте массу муравьиной кислоты, которая получится через час от начала реакции, если было взято 1 л раствора формальдегида концентрацией 1 моль/л и 3 л 2 М раствора перекиси водорода.

14. По зависимости общего давления от времени при изохорно-изотермических условиях (объём принять равным 1 л) определить кинетические параметры синтеза фосгена $CO + Cl_2 = COCl_2$ при условии одинаковых количеств исходных веществ и температуре 400 К. Какое время требуется для протекания реакции на 98 %?

 t, мин.
 0
 5
 10
 15
 20

 P_{Σ} , мм.рт.ст.
 724
 686
 655
 630
 608

15. По зависимости общего давления от времени при изохорно-изотермических условиях (объём принять равным 1 л) определить кинетические параметры синтеза фосгена $CO + Cl_2 = COCl_2$ при условии одинаковых количеств исходных веществ и температуре 300 К. Ка-

кое время требуется для протекания реакции на 98 %? Вычислить состав газовой смеси (мольные доли) через 3 часа от начала процесса и время, требуемое для синтеза 1 г фосгена.

<i>t</i> , мин.	20	40	60	120	∞
P_{Σ} , atm.	0,91	0,88	0,86	0,8	0,47

16. При исследовании восстановления оксида железа (II) водородом при температуре 677 °C в реторту закачали 1 л водорода под давлением 1,5 атм. Получили зависимость массы металлического железа от времени. Определите порядок реакции и константу скорости реакции. Вычислите время, требуемое для восстановления 1 г железа. Как изменится давление в системе через 2 часа от начала процесса?

<i>t</i> , мин.	10	20	30	40
<i>m</i> (Fe), г	0,380	0,626	0,785	0,889

17. По зависимости общего давления от времени (температура 27° C) определить кинетические параметры окисления сфалерита $2ZnS + 3O_2 = 2ZnO + 2SO_2$; рассчитать состав газовой фазы через 10 минут от начала процесса и массу серной кислоты, которую можно теоретически получить из двуокиси серы, полученной за это время.

<i>t</i> , мин.	0	2	3	4	5
P_{Σ} , атм.	1,15	1,06	1,02	0,99	0,96

18. По изменению объёма углекислого газа определить кинетические параметры восстановления оксида свинца (II) угарным газом $PbO + CO = CO_2 + Pb$ при температуре 27 °C и давлении 1 атм. вычислить массу свинца, которую можно получить через 10 минут от начала реакции, если было взято 10 литров угарного газа и очень большой избыток окиси свинца.

	<i>t</i> , мин.	0	2	3	4	5
Ī	<i>V</i> (CO ₂), мл	37	48,2	55	62,8	71,7

19. По зависимости общего давления от времени (температура 27° C) определить кинетические параметры окисления галенита $2PbS + 3O_2 = 2PbO + 2SO_2$; рассчитать состав газовой фазы через 7, 10 и 15 минут от начала процесса.

t, мин.	0	2	3	4	5
P_{Σ} , atm	. 0,575	0,531	0,513	0,497	0,483

20. За ходом взаимодействия карбоната кальция с соляной кислотой следили по изменению объёма углекислого газа. Определите порядок реакции и константу скорости реакции. Вычислите время, требуемое для снижения количества кислоты в 2 раза.

t, c	15	30	45	60	100	8
<i>V</i> (CO ₂), мл	27	45	57	65	75	80

21. При температуре 583 К хлористый алюминий возгоняется и разлагается с выделением молекулярного хлора и алюминия. За ходом реакции следили по изменению общего давления в реакторе вместимостью 1 л. Какой объём хлора получат через сутки? За какое время общее давление увеличится в 1,2 раза?

<i>t</i> , ч	0	2	4	6	8	10	12	14
$P_{\Sigma} \cdot 10^{-5}$, Π a	1,2	1,245	1,29	1,328	1,363	1,397	1,428	1,457

22. При изучении реакции окисления NO до NO_2 (2NO + O_2 = 2NO₂) при температуре -80 °C и мольном отношении оксида азота и кислорода 1:1 были получены следующие экспериментальные данные. Определите порядок реакции и константу скорости реакции. Вычислите состав газовой фазы (мольные доли) через 3 секунды от начала реакции.

t, c	0	1	2	3	4	5
m(NO), г	100	0,316	0,224	0,183	0,158	0,141

23. При газофазном разложении пероксида дитретичного бутила $(CH_3)_3C$ -O-O- $C(CH_3)_3$ образуется ацетон и этан. За ходом процесса в изохорных условиях при температуре 150 °C наблюдали по изменению общего давления во времени. Определите порядок реакции и константу скорости реакции. Вычислите массу ацетона, которую можно получить за полтора часа из 300 г $(CH_3)_3C$ -O-O- $C(CH_3)_3$. Рассчитайте время, за которое выделится 50 л ацетилена (h.y.), если на реакцию взято полкило пероксида.

 t, мин.
 0
 5
 10
 20
 30
 50

 P_Σ, атм.
 0,250
 0,270
 0,290
 0,330
 0,360
 0,430

24. При проведении реакции между пиридином и йодистым этилом, взятым в одинаковой концентрации 0.01 моль/л: $C_5H_5N+C_2H_5I=C_7H_{10}N^++I^-$ получили зависимость концентрации иодид-иона от времени. Определите порядок реакции и константу скорости реакции. Вычислите концентрацию пиридина через 2 часа и время, за которое прореагирует 95 % йодистого этила.

4 8 12 18 32 *t*, мин. 24 40 0,015 [I-], моль/л 0,026 0,035 0.044 0,052 0,059 0,064

25. Определите порядок реакции и константу реакции разложения окиси этилена на метан и угарный газ в изохорных условиях при температуре 688 К по изменению общего давления от времени. Вычислите состав газовой смеси через 40 минут, если исходное давление было 1 атм. Какая масса окиси этилена останется через час от начала процесса, если на реакцию взято 500 г окиси этилена?

 t, мин.
 4
 7
 9
 12
 18
 ∞
 P_{Σ} , атм.
 0,161
 0,167
 0,171
 0,176
 0,186
 0,306

26. При 583 К арсин разлагается по уравнению: $2AsH_3 = 2As + 3H_2$. Во время реакции при постоянных объеме и температуре получили зависимость общего давления от времени. Определите порядок реакции и константу скорости реакции. Определите время, требуемое для разложения 50 % арсина. Какая масса мышьяка образуется через неделю, если было взято 20 кг арсина?

<i>t</i> , ч	4	6	8	∞
P_{Σ} , кПа	105,1	108,35	111,34	146,63

27. По результатам титрования проб объемом 2 мл раствором перманганата калия концентрацией 1,5 ммоль/л определите кинетические параметры разложения перекиси водорода $2H_2O_2 = 2H_2O + O_2$, составьте кинетическое уравнение и вычислите время, которое потребуется для разложения 10 % пероксида водорода.

<i>t</i> , мин	0	5	10	15	20	30	40
V(KMnO ₄), мл	23,6	18,7	14,8	11,8	9,4	5,8	3,7

28. По данным об изменении общего давления в системе определите порядок и константу скорости димеризации бутадиена. Рассчитайте равновесный состав. Вычислить степень димеризации через 40 минут от начала реакции. Какая масса димера образуется через час, если было взято 300 г бутадиена в 1 л.

<i>t</i> , мин	0	10	20	40	80	120
P_{Σ} , atm.	0,820	0,76	0,72	0,66	0,59	0,55

29. По данным об изменении общего давления в системе определите порядок и константу скорости димеризации бутадиена, рассчитайте начальное и конечное давление бутадиена.

<i>t</i> , мин	5	10	30	40	60	80	100	140	180	220	260	300
$P_{\Sigma} \cdot 10^{-4}$, Па	8,14	7,89	7,11	6,85	6,45	6,16	5,93	5,61	5,39	5,24	5,08	4,96

30. По результатам измерения объёма азота при температуре 323 К и давлении 1 атм. определите кинетические параметры разложения фенилдиазонийхлорида $C_6H_5N_2Cl = C_6H_5Cl + N_2$ (исходная концентрация 10~г/л) и время, необходимое для разложения 60~% фенилдиазонийхлорида. Какое время потребуется для достижения состояния равновесия? Сколько фенилдиазонийхлорида при этом разложится (доля от количества исходного вещества)

 t, мин.
 6
 9
 12
 18
 24
 30
 ∞
 $V(N_2)$, π 0,62
 0,84
 1,05
 1,33
 1,5
 1,62
 1,79

31. При исследовании реакции омыления метилацетата гидроксидом натрия отбирали пробы объёмом 5 мл, к каждой из которых добавляли по 5 мл раствора соляной кислоты концентрацией 0,01 моль/л и титровали раствором гидроксида калия концентрацией 0,01 моль/л. Получили зависимость объёма титранта от времени. Определите порядок реакции и константу скорости реакции, если эфир и щелочь были взяты в соотношении 1:1. За какое время прореагирует 98 % эфира? Какова остаточная концентрация эфира через час от начала реакции?

 t, мин.
 3
 5
 10
 15
 25

 V(КОН), мл
 1,3
 1,85
 2,7
 3,2
 3,75

32. При изучении реакции омыления этилацетата щелочью при эквимолярных количествах реагентов отбирали пробы раствора объёмом 10 мл и получили зависимость объема раствора соляной кислоты концентрацией 0,1 н. (титрант) от времени. Определите порядок реакции и константу скорости реакции. Определите, за какое время прореагирует 98 % эфира, если было взято его 1,5 кг, а щелочи в мольном отношении в 1,5 раза больше.

 t, мин
 0
 3
 5
 10
 15
 25

 V_T, мл
 10,00
 7,40
 6,30
 4,60
 3,63
 2,54

33. При гидролизе метилацетата CH₃OCOCH₃ + H₂O = CH₃COOH + CH₃OH отбирали пробы объёмом 2 мл, которые титровали 0,05 н. раствором гидроксида натрия. По зависимости расхода титранта от времени определите порядок и константу скорости реакции. Вычислите время, необходимое для разложения половины эфира

 t, мин.
 0
 30
 60
 90
 120
 150

 V_Т, мл
 12,70
 13,70
 14,65
 15,85
 17,30
 20,25

34. Для реакции $C_2H_5OH + Br_2 = CH_3COH + 2HBr$ при большом избытке спирта получили зависимость концентрации брома от времени протекания процесса. Определить порядок реакции по брому, общий порядок реакции, если для обоих реагентов он одинаков, и константу скорости реакции. Рассчитайте время, за которое выход ацетальдегида будет 95 %. Найдите объём бромоводорода (н.у.), который образуется за 15 минут при одинаковой исходной концентрации реагентов 0,1 моль/л.

0 4 10 15 20 t, мин $C_{\rm I}$, ммоль/л 4,05 3,40 2,80 2,35 2,10 $C_{\rm II}$, ммоль/л 8,14 6,20 4,57 3,75 3,18

35. Определить порядок реакции и среднее значение константы скорости реакции $2Ag + (NH_4)_2S_2O_8 = Ag_2SO_4 + (NH_4)_2SO_4$ и вычислить концентрацию сульфата серебра через 30 минут от начала реакции и время полупревращения. Какая масса серебра успела раствориться за это время?

<i>t</i> , мин.	6	8	13	17	8
$C(Ag_2SO_4)$ ммоль/л	3,00	4,00	6,10	7,80	2,92

36. В результате разложения N_2O_4 по реакции $N_2O_4 = 2NO_2$ (T = 30°C, V = 1 л) в изохорных условиях получили зависимость общего давления от времени. Определить порядок и

константу скорости реакции. Для общего давления равного 1 атм. вычислите время, при котором это наступит, степень превращения N₂O4 и состав газовой смеси (мольные доли).

<i>t</i> , мин.	0	184	319	526	867	1198	1877	?
P_{Σ} , atm.	0,58	0,64	0,68	0,74	0,82	0,88	0,98	1

37. При исследовании реакции $CO + H_2O = CO_2 + H_2$ при температуре 313 К и давлении 1 атм. пробы газовой смеси объёмом 500 мл пропускали через трубки с силикагелем массой 0,50 г. Получили зависимость массы силикагеля от времени. Определить порядок и константу скорости реакции, если было взято одинаковое количество угарного газа и паров воды. Вычислить состав газовой смеси (мольные доли) через 3 часа для исходной концентрации реагентов 19,4 ммоль/л. Какое время потребуется для снижения концентрации CO в 10 раз, если мольное отношение CO в 2:1, а исходное содержание угарного газа 0,02 моль/л?

<i>t</i> , мин.	0	5	10	20	40	80
$m(SiO_2)$, Γ	0,675	0,668	0,662	0,651	0,633	0,607

38. Монохлоруксусная кислота при 25 °C взаимодействует с водой, взятой в большом избытке: $CH_3CICOOH + H_2O = CH_2(OH)COOH + HCl$. За ходом реакции следили посредством отбора проб одинакового объёма, которые титровали щелочью. Определите порядок и константу скорости реакции. Найдите время полупревращения хлоруксусной кислоты.

<i>t</i> , мин.	0	600	780	2070
V(NaOH), мл	12,9	15,8	16,4	20,5

39. При газофазном изохорном разложении ацетальдегида на метан и угарный газ при температуре 391 °C получили зависимость общего давления от времени. Определите порядок и константу скорости реакции. Рассчитайте состав газовой смеси и степень превращения ацетальдегида через 5 минут от начала процесса и время, за которое степень превращения будет 95 %.

t, c	16	31	53	70	98	110	∞
P_{Σ} , атм.	0,671	0,709	0,758	0,796	0,851	0,869	1,256

40. Азодифенилметан в растворе толуола распадается с выделением азота по реакции

При исследовании кинетики этого процесса для исходной концентрации азодифенилметана 0,01 моль/л получили зависимость объёма азота от времени при давлении 1 атм. и температуре 54 °C. Определить порядок и константу скорости реакции. Вычислить время полупревращения азодифенилметана и объём азота, который при этом выделится и время, необходимое для разложения 98 % азодифенилметана.

<i>t</i> , мин.	20	34	100	200
$V(N_2)$, мл	30,6	49	121,8	188,2

41. При изучении кинетики присоединения хлористого водорода к изобутену (бутен-1) получили зависимость концентрации хлористого водорода от времени. Определить порядок и константу скорости реакции. Вычислить какая масса хлорбутана получится за 12 часов реакции при равных концентрациях исходных веществ. Вычислить время для получения выхода хлорбутена 98 % а) для концентрации исходных веществ 0,4 моль/л и б) при концентрации бутена-1 0,4 моль/л и двухкратном мольном избытке хлористого водорода.

t, мин.	0	101	286	919	2359
[HCl], моль/л	0,3806	0,3509	0,3056	0,2156	0,1276

2. Ионная сила раствора, коэффициент активности

2.1. Краткие теоретические сведения

Чтобы не усложнять термодинамические соотношения, выведенные для идеальных растворов, Льюис предложил использовать в термодинамических соотношениях вместо концентрации активность.

Активность компонента связана с его концентрацией в растворе через коэффициент активности γ . $a = \gamma C$.

Для растворов электролитов коэффициент активности связан с величиной ионной ассоциации. Чем сильнее ионная ассоциация в растворе, тем ниже коэффициент активности. Ионная ассоциация усиливается с ростом концентрации электролита в растворе и с увеличением заряда ионов. Если между ионами нет химического взаимодействия, то степень ассоциации ионов определяется ионной силой раствора.

Ионной силой называют полусумму произведений моляльных концентраций всех ионов в растворе на квадраты их зарядов:

$$I = 0.5 \sum C_{m,i} z_i^2$$
.

Чем выше ионная сила раствора, тем ниже коэффициент активности. При этом в растворах с одинаковой ионной силой среднеионные коэффициенты активности в первом приближении совпадают. В предельно разбавленном растворе ионная ассоциация отсутствует и коэффициент активности равен единице, т.е. активность равна концентрации.

В рамках теории Дебая-Хюккеля для расчета среднеионного коэффициента активности вещества в водном растворе применяется одно из двух уравнений:

$$\lg \gamma_{\pm} = -0.51 \mid z_{+} z_{-} \mid \frac{\sqrt{I}}{1 + \sqrt{I}}$$

при ионной силе раствора менее 0,05 моль/кг и

$$\lg \gamma_{\pm} = -0.51 \mid z_{+} z_{-} \mid \left(\frac{\sqrt{I}}{1 + \sqrt{I}} - 0.2I \right)$$

при ионной силе раствора от 0,05 до 0,5 моль/кг, где $\,z_{\scriptscriptstyle +}\,$ и $\,z_{\scriptscriptstyle -}\,$ – заряд катиона и аниона.

Теория Дебая-Хюккеля предполагает возможность расчета коэффициента активности отдельного иона по уравнениям

$$\lg \gamma_i = -0.51 z_i^2 \frac{\sqrt{I}}{1 + \sqrt{I}}$$

при ионной силе раствора менее 0,05 моль/кг и

$$\lg \gamma_i = -0.51z_i^2 \left(\frac{\sqrt{I}}{1 + \sqrt{I}} - 0.2I \right)$$

при ионной силе раствора от 0,05 до 0,5 моль/кг, где z_i – заряд отдельного иона.

2.2. Примеры решения задач

Пример 3. Вычислить pH раствора, полученного при смешивании 100 мл раствора серной кислоты концентрацией 2,5 % ($d_{\rm p-p}^{\rm H_2SO_4}=1{,}015~{}_{\Gamma}/{}_{\rm CM}{}^3$) и 120 мл раствора гидроксида калия концентрацией 2 % ($d_{\rm p-p}^{\rm KOH}=1{,}016~{}_{\Gamma}/{}_{\rm CM}{}^3$).

Решение. 1. Найти массу и количество вещества серной кислоты

$$m_{
m H_2SO_4} = rac{\omega_\%^{
m H_2SO_4}}{100} m_{
m p-p}^{
m H_2SO_4} = rac{\omega_\%^{
m H_2SO_4}}{100} V_{
m p-p}^{
m H_2SO_4} d_{
m p-p}^{
m H_2SO_4} = rac{2,5}{100} 100 \cdot 1,015 = 2,54 \ \mbox{г};$$
 $n_{
m H_2SO_4} = rac{m_{
m H_2SO_4}}{M_{
m H_2SO_4}} = rac{2,54}{98} = 0,026 \
m моль.$

2. Найти массу и количество вещества гидроксида калия

$$m_{ ext{KOH}} = rac{\omega_{\%}^{ ext{KOH}}}{100} m_{ ext{p-p}}^{ ext{KOH}} = rac{\omega_{\%}^{ ext{KOH}}}{100} V_{ ext{p-p}}^{ ext{KOH}} d_{ ext{p-p}}^{ ext{KOH}} = rac{2.0}{100} 120 \cdot 1,016 = 2,44 \ ext{г};$$
 $n_{ ext{KOH}} = rac{m_{ ext{KOH}}}{M_{ ext{KOH}}} = rac{2.44}{56} = 0,044 \ ext{моль}.$

3. Найти массу воды в растворах серной кислоты и гидроксида калия.

$$\begin{split} m_{\rm H_2O}^{\rm H_2SO4} &= m_{\rm p-p}^{\rm H_2SO4} - m_{\rm H_2SO_4} = V_{\rm p-p}^{\rm H_2SO_4} d_{\rm p-p}^{\rm H_2SO_4} - m_{\rm H_2SO_4} = 100 \cdot 1,\!015 - 2,\!54 = 101,\!5 - 2,\!54 = 98,\!96\,\mathrm{r}; \\ m_{\rm H_2O}^{\rm KOH} &= m_{\rm p-p}^{\rm KOH} - m_{\rm KOH} = V_{\rm p-p}^{\rm KOH} d_{\rm p-p}^{\rm KOH} - m_{\rm KOH} = 120 \cdot 1,\!016 - 2,\!44 = 121,\!92 - 2,\!44 = 119,\!48\,\mathrm{r}. \end{split}$$

4. Составить уравнение реакции между серной кислотой и гидроксидом калия

$$H_2SO_4 + 2KOH = K_2SO_4 + 2H_2O.$$

Из уравнения реакции следует, что на n моль серной кислоты приходится 2n моль гидроксида калия, при этом образуется n моль сульфата калия и 2n моль воды. На 0,026 моль H_2SO_4 должно расходоваться $2\cdot0,026=0,052$ моль КОН, следовательно, гидроксид калия находится в недостатке и служит основой для составления материального балансы реакции.

5. Составить материальный баланс реакции

	0,5n	n	0,5n	n
вещество	H_2SO_4	KOH	K_2SO_4	H_2O
было	0,026	0,044	0	0
реакция	-0,022	-0,044	+0,022	0,044
ИТОГО	0,004	0	0,022	0,044

6. Найти массу воды в конечном растворе

$$m_{\rm H_{2O}} = m_{\rm H_{2O}}^{\rm H_{2SO4}} + m_{\rm H_{2O}}^{\rm KOH} + m_{\rm H_{2O}}^{\rm p-uug} = 98,96 + 119,48 + 0,044 \cdot 18 = 219,23 \; \rm r.$$

7. Вычислить моляльные концентрации ионов в конечном растворе

$$[\mathrm{H}^+] = \frac{n_{\mathrm{H}^+}}{m_{\mathrm{H}_2\mathrm{O}}} = \frac{2n_{\mathrm{H}_2\mathrm{SO}_4}}{m_{\mathrm{H}_2\mathrm{O}}} = \frac{2\cdot0,004}{219,23} \cdot 10^3 = 0,036\,\mathrm{моль/кг};$$

$$[\mathrm{K}^+] = \frac{n_{\mathrm{K}^+}}{m_{\mathrm{H}_2\mathrm{O}}} = \frac{2n_{\mathrm{K}_2\mathrm{SO}_4}}{m_{\mathrm{H}_2\mathrm{O}}} = \frac{2\cdot0,022}{219,23}\cdot10^3 = 0,201\,\mathrm{моль/кг},$$

$$[SO_4^{2-}] = \frac{n_{SO_4^{2-}}}{m_{H_2O}} = \frac{n_{H_2SO_4} + n_{K_2SO_4}}{m_{H_2O}} = \frac{0,004 + 0,022}{219,23} \cdot 10^3 = 0,119 \text{ моль/кг}.$$

8. Вычислить ионную силу конечного раствора

$$I = 0.5([\mathrm{H}^+]z_{\mathrm{H}^+}^2 + [\mathrm{K}^+]z_{\mathrm{K}^+}^2 + [\mathrm{SO}_4^{2-}]z_{\mathrm{SO}_4^{2-}}^2) = 0.5(0.036 + 0.201 + 0.119 \cdot 4) = 0.357.$$

9. Вычислить коэффициент активности катионов водорода

$$\begin{split} \lg \gamma_{\mathrm{H^+}} &= -0.51 z_{\mathrm{H^+}}^2 \left(\frac{\sqrt{I}}{1 + \sqrt{I}} - 0.2I \right) = -0.51 \cdot 1^2 \left(\frac{\sqrt{0.357}}{1 + \sqrt{0.357}} - 0.2 \cdot 0.357 \right) = -0.15; \\ \gamma_{\mathrm{H^+}} &= 10^{\lg \gamma_{\mathrm{H^+}}} = 10^{-0.15} = 0.71 \,. \end{split}$$

10. Вычислить рН конечного раствора

$$pH = -\lg a_{H^+} = -\lg(\gamma_{H^+}[H^+]) = -\lg(0.71 \cdot 0.036) = 1.59.$$

2.3. Задачи для решения

Вычислить рН раствора по приведенным ниже данным.

- 42. После выщелачивания боксита по следующим данным: масса руды 1 т; $\omega(Al_2O_3\cdot H_2O)=80$ %; V(NaOH)=3,1 м³; $\omega(NaOH)=15$ %.
- 43. Если к 20 л раствора соляной кислоты концентрацией 10 % (d = 1,047 г/мл) было добавлено 5 м³ раствора гидроксида кальция концентрацией 0,02 экв/л.
- 44. После выщелачивания руды по следующим данным: масса руды = 1 т; $\omega(\text{Li}_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot4\text{SiO}_2)$ =70 %; $V(\text{H}_2\text{SO}_4)$ =4 м³; $\omega(\text{H}_2\text{SO}_4)$ =5% (d=1,032 г/мл); уравнение реакции: $\text{Li}_2\text{O}\cdot\text{Al}_2\text{O}_3\cdot4\text{SiO}_2 + \text{H}_2\text{SO}_4 = \text{Li}_2\text{SO}_4 + \text{Al}_2\text{O}_3\cdot4\text{SiO}_2 \cdot \text{H}_2\text{O} \downarrow$.
- 45. После выщелачивания руды при следующих условиях: масса руды 1 т, в ней содержится 6 % $Cu_4(SO_4)(OH)_6$; $\omega(H_2SO_4)=3$ %, d=1,03 г/мл, $V(H_2SO_4)=3$ м³.
- 46. После смешивания 10 л соляной кислоты концентрацией 3,65 г/л и 15 л гидроксида натрия концентрацией 2 г/л.
- 47. Найти объем раствора 0,005 M соляной кислоты, если после добавления к нему 0,5 л раствора гидроксида бария концентрацией 0,003 моль/л получился раствора с pH = 4,03.
 - 48. После смешивания 0,2 л 0,5 н. HCl и 0,3 л 0,3 M NaOH.
- 49. После смешивания 200 мл 0,5 н. раствора серной кислоты и 300 мл раствора ед-кого натра с концентрацией 0,3 моль/л.

- 50. После смешивания 20 мл 0,5 н. раствора соляной кислоты и 10 мл 0,2 н. раствора гидроксида бария.
- 51. После смешивания 30 мл раствора, содержащего 0,109 г серной кислоты в 100 мл раствора, и 40 мл раствора NaOH, содержащего 0,098 г гидроксида натрия в 100 мл раствора.
- 52. После смешивания 10 мл 6 % раствора соляной кислоты плотностью 1,03 г/см³ и 10 мл 1 % раствора гидроксида бария плотностью 1,0 г/см³.
- 53. После смешивания 150 мл 0,4 н. раствора соляной кислоты и 250 мл 0,2 н. раствора гидроксида натрия.
- 54. После смешивания 4 мл серной кислоты концентрацией 40 % (плотность 1,303 г/см³) и 200 мл серной кислоты, концентрацией 0,001 моль/л.
- 55. После смешивания 30 мл раствора, содержащему 10 г серной кислоты в 100 мл раствора, и 40 мл раствора NaOH, содержащего 9 г гидроксида натрия в 100 мл раствора.
- 56. После смешивания 500 мл раствора силиката натрия концентрацией 11 г/л и 500 мл раствора серной кислоты концентрацией 4,6 г/л. Дополнительно определить массу оксида кремния.
- 57. После смешивания 500 мл раствора гидроксида бария концентрацией 1,5 % (плотность 1,008 г/см 3) и 300 мл 2 % раствора серной кислоты (плотность 1,012 г/см 3).
- 58. После смешивания 500 мл 4 % раствора гидроксида натрия (плотность 1,043 г/см³) и 30 мл 2 % раствора серной кислоты (плотность 1,012 г/см³).
- 59. После смешивания 2 г гидроксида алюминия и 350 мл 1 % раствора соляной кислоты.
 - 60. 1,5 г/см 3) и 3 м 3 серной кислоты концентрацией 2 % (плотность 1,012 г/см 3).
- 61. После смешивания 5 г карбоната магния и 150 мл раствора азотной кислоты, концентрацией 4 % (плотность 1,01 г/см³).
- 62. После смешивания 1,5 л раствора гидроксида натрия концентрацией 4 г/л и 0,5 л газообразного хлороводорода (н.у.).
- 63. После смешивания 1,5 л 0,2 М раствора гидроксида кальция и 0,5 л углекислого газа (25°C, 1 атм.).
- 64. После смешивания 45 мл 0,3 н. раствора соляной кислоты и раствора, содержащий 0,32 г гидроксида натрия в 40 мл.
- 65. После смешивания одного литра раствора, содержащего 1,4 г гидроксида калия, и 60 мл 0,5 н. раствора серной кислоты.

- 66. После смешивания 20 мл раствора сульфата меди, в 1 л которого содержится 10 г меди, и 100 миллилитров 0,1 н. едкого натра (NaOH).
- 67. После смешивания 2 л раствора, содержащего 8,5 г гидроксида бария и 32 мл 10 % соляной кислоты плотностью 1,047 г/ см³.
- 68. После смешивания раствора гидроксида бария с концентрацией 100 г/л и 0,5 н. соляной кислоты в объемном отношении 1:2.
- 69. После смешивания 20 мл 0,1 М раствора серной кислоты и 8 мл 0,5 н. раствора гидроксида натрия.
- 70. После смешивания 60 мл 0,2 н. раствора серной кислоты и раствора, содержащего 0,51 г гидроксида калия в 30 мл.
- 71. Хлороводород, образовавшийся при действии серной кислоты на 19 г безводного хлорида магния, пропустили в раствор объемом 500 мл, содержащий 10 г гидроксида калия. Найти рН полученного раствора.
- 72. Какое вещество, и в каком количестве останется в избытке в результате реакции между 14 г оксида кальция и 1 л раствора, содержащим 32 г азотной кислоты? Найти рН полученного раствора. Плотность раствора принять равной 1,02 г/см³.
- 73. Какое вещество, и в каком количестве останется в избытке в результате реакции между 4 г оксида магния и 10 г серной кислоты? Найти рН полученного раствора. Объем раствора серной кислоты 0,5 л. Плотность раствора 1,01 г/см³.
- 74. Горячий КОН реагирует с хлором по реакции: 6 КОН + 3 Cl_2 = 5 КСІ + КСІО₃ + 3 H_2O . Найти рН раствора после поглощения 0,8 л хлора (7°C и 98,64 кПа) 0,1 М раствором гидроксида калия объемом 600 мл.
- 75. Сколько граммов гидроксида железа выпадет в осадок, если к 500 мл 0,2 н. раствора хлорида железа (III) (плотность 1,03 г/см 3) добавить 5 г гидроксида натрия? Вычислить рН раствора после реакции.
- 76. Найти объем раствора 0,005 M соляной кислоты, если после добавления к нему 0,5 л раствора гидроксида бария концентрацией 0,003 моль/л получился раствора с pH = 4,03.
- 77. После смешивания 10 мл 6 % раствора соляной кислоты плотностью 1,03 г/см³ и 10 мл 1 % раствора гидроксида бария плотностью 1,0 г/см³.

3. рН гидратообразования

3.1. Краткие теоретические сведения

Значение рН, при котором из данного раствора начинает выпадать осадок гидроксида, называют рН гидратообразования. Для расчета этой характеристики используют равновесие растворимости гидроксида металла:

$$Me(OH)_{x,s} = Me_{aq}^{x+} + xOH_{aq}^{-},$$

для которого произведение растворимости

$$L_{{\rm Me(OH)}_x} = a_{{\rm Me}_{aq}^{x+}} a_{{\rm OH}_{aq}^-}^x = \gamma_{\pm}^{{\rm Me(OH)}_x} [{\rm Me}_{aq}^{x+}] a_{{\rm OH}_{aq}^-}^x,$$

где $[\mathrm{Me}_{aq}^{x^+}]$ является аналитической концентрацией катионов металла в растворе и определяется, также как и ионная сила раствора, концентрацией соли металла.

Активность гидроксид ионов рассчитывается по уравнению:

$$a_{\mathrm{OH}_{aq}^{-}} = x \sqrt{\frac{L_{\mathrm{Me(OH)}_{x}}}{\gamma_{\pm}^{\mathrm{Me(OH)}_{x}}[\mathrm{Me}_{aq}^{x+}]}}.$$

3.2. Примеры решения задач

Пример 4. Вычислить рН гидратообразования для раствора сульфата никеля с концентрацией 0,01 моль/л ($L_{(Ni(OH)_2)} = 1,2 \cdot 10^{-16}$).

Решение. 1. Составить уравнение растворимости гидроксида никеля

Ni(OH)
$$_2 = \text{Ni}_{aa}^{2+} + 2\text{OH}_{aa}^{-}$$

и его произведение растворимости

$$L_{\rm Ni(OH)_{\,2}} = a_{\rm Ni_{\it aq}^{\,2+}} a_{\rm OH_{\it aq}^{\,-}}^2 = \gamma_{\pm}^{\rm Ni(OH)_{\,2}} [\,{\rm Ni_{\it aq}^{\,2+}}\,] a_{\rm OH_{\it aq}^{\,-}}^2.$$

2. Вычислить ионную силу раствора сульфата никеля

$$\begin{split} I &= 0.5([\operatorname{Ni}^{2+}]z_{\operatorname{Ni}^{2+}}^2 + [\operatorname{SO}_4^{2-}]z_{\operatorname{SO}_4^{2-}}^2) = 0.5[C_{\operatorname{NiSO}_4} \cdot 2^2 + C_{\operatorname{NiSO}_4} \cdot (-2^2)] = \\ &= 0.5(0.01 \cdot 4 + 0.01 \cdot 4) = 0.04 \text{ моль/кг} \,. \end{split}$$

3. Рассчитать средний ионный коэффициент активности гидроксида никеля

$$\begin{split} \lg \gamma_{\pm}^{\text{Ni(OH)}\,2} &= -0.51 \, | \, z_{\text{Ni}}^{} \, 2 + z_{\text{OH}}^{} - \, | \, \frac{\sqrt{I}}{1 + \sqrt{I}} = -0.51 \cdot | \, 2 \cdot (-1) \, | \, \frac{\sqrt{0.04}}{1 + \sqrt{0.04}} = -0.17; \\ \gamma_{\pm}^{\text{Ni(OH)}\,2} &= 10^{\lg \gamma_{\pm}^{\text{Ni(OH)}\,2}} = 10^{-0.17} = 0.676. \end{split}$$

4. Из уравнения произведения растворимости гидроксида никеля выразить активность гидроксид-ионов и рассчитать ее численное значение

$$a_{\mathrm{OH}_{aq}^-} = \sqrt{\frac{L_{\mathrm{Ni(OH)}_{\,2}}}{\gamma_{\pm}^{\mathrm{Ni(OH)}_{\,2}}[\mathrm{Ni}_{\,aq}^{\,2+}]}} = \sqrt{\frac{L_{\mathrm{Ni(OH)}_{\,2}}}{\gamma_{\pm}^{\mathrm{Ni(OH)}_{\,2}}C_{\mathrm{NiSO}_{\,4}}}} = \sqrt{\frac{1,2\cdot 10^{-16}}{0,676\cdot 0,01}} = 0,013 \; \mathrm{моль/кг} \,.$$

5. Найти величину рН гидратообразования никеля (II)

$$pH = 14 - pOH = 14 + lg a_{OH^-} = 14 + lg 0,013 = 12,1.$$

3.3. Задачи для решения

Определить рН гидратообразования:

No	Соль	Концентрация, моль/кг	No	Соль	Концентрация, моль/кг
		1 1 /			*
78.	AlCl ₃	0,01	79.	$MgCl_2$	0,38
80.	$Be(NO_3)_2$	0,52	81.	MnSO ₄	0,062
82.	Bi(NO ₃) ₃	0,046	83.	NiCl ₂	0,031
84.	CaCl ₂	0,023	85.	Pb(NO ₃) ₂	0,004
86.	CdCl ₂	0,15	87.	Sb(NO ₃) ₃	0,002
88.	CoSO ₄	0,006	89.	$Sc(NO_3)_3$	0,001
90.	$Cr_2(SO_4)_3$	0,059	91.	SnCl ₂	0,012
92.	$Cu(NO_3)_2$	0,038	93.	SnCl ₄	0,003
94.	FeSO ₄	0,064	95.	$Sr(NO_3)_2$	0,055
96.	FeCl ₃	0,26	97.	$Tl(NO_3)_3$	0,001
98.	LaCl ₃	0,008	99.	$Y(NO_3)_3$	0,0012
100.	ZrOCl ₂	0,056	101.	ZnSO ₄	0,022

4. Термодинамические (коллигативные) свойства растворов

4.1. Краткие теоретические сведения

4.1.1. Закон Рауля

Признаком равновесия во всех растворах, при постоянстве давления и температуры, является одинаковое значение химического потенциала данного компонента в различных фазах системы.

$$\mu_i = \mu_i^*$$

при изменении концентрации раствора:

$$d\mu_i = d\mu_i^*$$

где μ_i -химический потенциал компонента в растворе; μ_i^* - химический потенциал компонента в насыщенном паре над раствором.

Если пар этого компонента подчиняется законам идеальных газов, то

$$\mathrm{d}\mu_i^* = \mathrm{RTdlnp}_i \,\mathrm{H}\,\mu_i^* = \mu_i^{0*} + \mathrm{RTlnp}_i$$

Для идеального и разбавленного раствора:

$$\mu_i = \mu_i^0 + RT \ln x_i;$$

$$d\mu_i = RT d \ln x_i$$

При постоянных T и р_{общ} равновесие наблюдается при условии $\, d\mu_i^* = d\mu_i : \,$

$$\int_{p_i=p_0}^{p_i} dlnp_i = \int_{x_i=1}^{x_i} dlnx_i$$

После интегрирования и преобразования получится закон Рауля для идеальных растворов:

$$p_1 = p_1^0 x_1$$
$$p_2 = p_2^0 x_2$$

здесь p_1 и p_2 - давление насыщенного пара растворителя и растворенного вещества над раствором; p_1^0 и p_2^0 - давление насыщенного пара над индивидуальным растворителем и растворенным веществом, взятым в том же агрегатном состоянии, давлении и температуре, что и в растворе; x_1 и x_2 – мольные доли растворителя и растворенного вещества в растворе.

Из закона Рауля следует, что понижение парциального равновесного давления насыщенного пара растворителя над раствором является линейной функцией мольной доли растворенного вещества в растворе:

$$\frac{p_1^0 - p_1}{p_1^0} = \frac{\Delta p_1}{p_1^0} = x_2 = \frac{n_2}{n_2 + n_1} \cong \frac{n_2}{n_1} \pi p \mu \quad n_2 << n_1$$

"относительное понижение давления насыщенного пара растворителя над раствором равно молярной доле растворенного вещества в растворе".

Закон Рауля применим к растворителю в предельно разбавленных и идеальных растворах и к растворенному веществу только в идеальных растворах.

4.1.2. Изменение температур фазовых переходов растворов.

Повышение температуры кипения и понижение температуры кристаллизации прямо пропорциональны моляльной концентрации растворенного вещества.

При температуре кипения должно наблюдаться равенство химических потенциалов растворителя в растворе $\left(\mu_{1(x_i,T_{\text{кип}})}\right)$ и пара индивидуального растворителя $\left(\mu^0_{1(T_{\text{кип}})}\right)$ (растворенное вещество принимается нелетучим):

$$\mu_{1(x_1;T_{\text{кип}})} = \mu^0_{1(T_{\text{кип}})}$$

После преобразований и упрощений для идеальных и разбавленных растворов получается:

$$T_{_{\text{КИП}}}-T_{_{\text{КИП}}}^0=\Delta_{_{\text{КИП}}}T=\frac{R(T_{_{\text{КИП}}}^0)^2}{\Delta_{_{\text{МОП}}}H^0}\cdot x_2=K_{_{96}}C_{_{m}}$$

где $T_{\text{кип}}$ и $T_{\text{кип}}^0$ - соответственно температуры кипения раствора и индивидуального растворителя; $\Delta_{\text{кип}}$ Т – повышение температуры кипения; C_{m} – моляльная концентрация растворенного вещества, моль/кг; $K_{\text{эб}}$ – эбуллиоскопическая константа растворителя. Численно она равна повышению температуры кипения одномоляльного раствора со свойствами предельно раз-

бавленного раствора. Зависит только от природы растворителя. Значение K_{96} может быть вычислено по уравнению:

$$K_{96} = R \frac{\left(T_{\text{кип}}^{0}\right)^{2} M_{1}}{\Delta_{\text{исп}} H^{0} \cdot 1000}$$

где $\Delta_{\text{исп}} H^0$ - молярная теплота испарения растворителя, Дж/моль; M_1 – молярная масса растворителя, кг/моль.

Изменение температуры кристаллизации зависит от состава образующейся твердой фазы. При кристаллизации индивидуального растворителя из раствора должно соблюдаться равенство химических потенциалов растворителя в растворе $\mu_{l(x_i,T_{kp})}$ и чистого растворителя $\mu_{l(T_{kn})}^0$:

$$\mu_{1(x_1;T_{kp})} = \mu^0_{1(T_{kp})}$$

Химический потенциал растворителя в растворе при постоянном давлении — функция температуры кристаллизации и состава раствора, а химический потенциал индивидуального растворителя — функция только температуры кристаллизации. После преобразований и упрощений получим:

$$T_{kp}^{0} - T_{kp} = \Delta_{kp}T = \frac{R(T_{mn}^{0})^{2}}{\Delta_{m}H_{n}^{0}}x_{2} = K_{kp}C_{m}$$

где T_{kp} и T_{kp}^0 - соответственно температуры кристаллизации раствора и чистого растворителя; $\Delta_{kp}T$ — понижение температуры кристаллизации; C_m — моляльная концентрация растворенного вещества; K_{kp} — криоскопическая постоянная растворителя, численно равная понижению температуры кристаллизации одномоляльного раствора. Зависит только от природы растворителя. Криоскопическую постоянную можно вычислить по уравнению:

$$K_{kp} = R \frac{(T_{kp}^{0})^{2} M_{1}}{\Delta_{m} H^{0} \cdot 1000}$$

где $\Delta_{\rm mr} {
m H}^0$ - молярная теплота плавления растворителя, Дж/моль.

Если при кристаллизации образуется фаза переменного состава (твердый раствор), изменение температуры кристаллизации зависит от состава твердой и жидкой фазы и не может быть рассчитано по уравнению температуры замерзания раствора.

4.1.3. Осмотическое давление.

Процесс самопроизвольного перехода растворителя в раствор через полупроницаемую мембрану называется осмосом. Давление π , которое нужно приложить к раствору, чтобы осмос прекратился, называется осмотическим давлением.

Осмотическое давление для предельно разбавленных и идеальных растворов не зависит от природы компонентов и возрастает пропорционально концентрации растворенного вещества и температуре, причем коэффициент пропорциональности оказался универсальной константой, численно равной газовой постоянной R.

$$\pi = \frac{RT}{V_1^0} \cdot x_2 = C_M RT \cdot 10^3$$

здесь V_1^0 - объем одного моля растворителя, M^3 .

Выражая концентрацию как число моль растворенного вещества n_2 отнесенное к единице объема раствора, получим:

$$\pi V = n_2 RT$$

Это уравнение по форме совпадает с уравнением Менделеева-Клайперона для состояния идеального газа: pV = nRT. Это позволило Вант-Гоффу сделать вывод, что осмотическое давление равно тому давлению, которое оказывало бы растворенное вещество, если бы оно, находясь в газообразном состоянии при той же температуре занимало объем, который занимает раствор (принцип Вант-Гоффа).

Вант-Гофф установил, что в растворах электролитов изменение осмотического давления превышает вычисленное. Подобные отклонения наблюдаются при определении давления насыщенного пара растворителя над раствором электролита, а также при измерении температур кристаллизации и кипения растворов электролитов. Для того, чтобы сделать существующие уравнения пригодными для расчетов растворов электролитов, Вант-Гофф ввел в них множитель і, названный изотоническим коэффициентом. С учетом изотонического коэффициента для растворов электролитов получим:

$$\begin{split} \Delta p &= i p_1^0 \cdot x_2 \\ \Delta_{\text{кип}} T &= i \cdot \frac{R(T_{\text{кип}}^0)^2}{\Delta_{\text{исп}} H^0} \cdot x_2 = i K_{\text{36}} C_m \\ \Delta_{\text{кр}} T &= i \cdot \frac{R(T_{\text{kp}}^0)^2}{\Delta_{\text{пл}} H^0} \cdot x_2 = i K_{\text{kp}} C_m \\ \pi &= i \cdot \frac{RT}{V_0^0} \cdot x_2 = i C_M RT \cdot 10^3 \end{split}$$

где і — показатель увеличения (уменьшения) числа частиц вследствие диссоциации (ассоциации). Значение і >1 свидетельствует о наличии процесса диссоциации, а і < 1 — об процесса ассоциации. Численное значение изотонического коэффициента позволяет для случая диссоциации вычислить степень диссоциации α :

$$\alpha = \frac{i-1}{v-1}$$

и для случая ассоциации вычислить степень ассоциации β:

$$\beta = \frac{(1-i)\nu'}{\nu'-1}$$

где V – число частиц, получающихся из одной частицы при диссоциации; v' – число частиц, объединяющихся в одну при ассоциации.

Коллигативные свойства растворов используются для определения молярной массы растворенных веществ, а также для определения изменения состояния вещества в растворе по сравнению с чистым веществом.

4.2. Примеры решения задач

Пример 5. Давление насыщенного пара над раствором, содержащим 5 г едкого натра в 180 г воды, при $100~^{\circ}$ C составляет $0.99\cdot10^{5}$ Па. Давление насыщенного пара над чистой водой при 100° C составляет $1.01\cdot10^{5}$ Па. Определить состояние едкого натра в растворе.

Решение

Состояние едкого натра в растворе можно оценить по величине изотонического коэффициента і.

По закону Рауля:

$$\begin{split} \frac{\Delta p}{p_1^0} &= \frac{p_1^0 - p_1}{p_1^0} = i \cdot x_2 \\ \frac{p_1^0 - p_1}{p_1^0} &= \frac{\left(1,013 - 0.99\right) \cdot 10^5}{1,013 \cdot 10^5} = 0,0227 \\ x_2 &= \frac{n_{\text{NaOH}}}{n_{\text{NaOH}} + n_{\text{H}_2\text{O}}} = \frac{5 \, \text{г/40 г/моль}}{5 \, \text{г/40 г/моль}} = 0,012 \\ i &= \frac{0,0227}{0.012} = 1,89 \end{split}$$

Полученное значение i > 1 указывает на наличие диссоциации NaOH. Кажущуюся степень диссоциации определим по уравнению:

$$\alpha_{\text{\tiny KAJK}} = \frac{i-1}{z-1} = \frac{1,816-1}{2-1} = 0,816$$

По современным представлениям NaOH, как и все сильные электролиты, диссоциирован полностью, а отклонение і от 2 объясняется обычно отклонением состояния раствора от предельно разбавленного вследствие сильных взаимодействий ионов между собой и с растворителем.

4.3. Задачи для решения

- 102. Каково осмотическое давление 2 %-ного раствора хлорида бария в воде при температуре 47 0 C, если известно, что плотность раствора 1,01 г/см 3 , а соль диссоциирована на 98 %? $d_{\rm H_{2O}} = 1,978$ г/см 3 .
- 103. Определить кажущуюся степень диссоциации хлорида натрия в воде, если известно, что 1,75 %-ный раствор этой соли в воде при температуре 27 °C имеет осмотическое давление 14,54 атм., а плотность раствора 1,01 г/см 3 . $\mathrm{d_{H_2O}}=0,9965$ г/см 3 .
- 104. Осмотическое давление раствора глюкозы в воде при 10 0 C равно 2,33 атм. Вычислить относительное понижение упругости пара раствора. $d_{\rm H_{2}O}=0,9997$ г/см 3 .
- 105. Определить сколько граммов глицерина нужно прибавить к 100 г воды, чтобы получившийся раствор имел осмотическое давление 5,084 атм. $d_{\rm H,O}=1$ г/см 3 .

106. Считая моляльную и молярную концентрации практически одинаковыми, определить осмотическое давление водного раствора некоторой соли при T=298 K, если температура его кристаллизации -3 °C ($K_{\kappa p}(H_2O)=1,86~K\cdot \kappa r/moль$). $d_{H_2O}=0,9971~r/cm^3$. $\Delta_{\Pi \Pi}H_{H_2O}^o=6~\kappa D$ ж/моль.

107. В 293 мл воды растворено 7 г хлорида натрия; плотность раствора 1,008 г/см 3 . Определить осмотическое давление при температуре 33 0 C, если кажущаяся степень диссоциации соли в воде 95 %. $\mathrm{d}_{\mathrm{H}_2\mathrm{O}}=0,995$ г/см 3 .

108. В 1 л морской воды в основном содержатся следующие соли:

Соль	NaCl	MgCl ₂	MgSO ₄	CaSO ₄	KCl
Содержание, г	27,2	3,4	2,3	1,3	0,6

Считая, что соли полностью диссоциированы, определить осмотическое давление морской воды при температуре 18 0 C. $d_{H_{2}O}=0.9986~\text{г/cm}^{3};~d_{p-pa}=1.03~\text{г/cm}^{3}.$

- 109. Определить концентрацию сульфата хрома (III) в воде и выразить ее всеми способами, если известно, что при температуре 17 °C раствор этой соли в воде (плотность $1,04~\text{г/cm}^3$) имеет осмотическое давление 11,77~атм, а кажущаяся степень диссоциации соли 97,5~%. $d_{\text{H}_{2}\text{O}} = 0,9988~\text{г/cm}^3$.
- 110. Раствор хлорида натрия в воде изоосмотичен при температуре 7 °C с децимолярным водным раствором тростникового сахара. Определить кажущуюся степень диссоциации хлорида натрия, если концентрация соли 0,052 моль/л.
- 111. Каково осмотическое давление 1,5 %-ного раствора хлорида кальция в воде, если плотность раствора 1,002 г/см³, температура составляет 57 °C, а соль диссоциирована на 98,5%? $d_{\rm H_{2O}} = 0,9845$ г/см³.
- 112. Каково относительное понижение упругости паров воды над водным раствором глицерина ($C_3H_5(OH)_3$), если при температуре 27 °C осмотическое давление этого раствора $6.4\cdot10^5$ Па. $d_{H_2O}=0.9965$ г/см³.
- 113. Какова упругость паров воды над 1 %-ным раствором хлорида калия (плотность $1,005~\mathrm{г/cm^3}$) при температуре 40 °C, если давление насыщенного пара при этой температуре 55,32 мм.рт.ст. Известно также, что осмотическое давление раствора в этих условиях 6,65 атм. $d_{\mathrm{H}_{2O}} = 0,9922~\mathrm{г/cm^3}$.
- 114. Относительное понижение упругости пара над раствором тростникового сахара $(C_{12}H_{22}O_{11})-1~\%.~Определить осмотическое давление этого раствора при температуре 47 °C, если <math>d_{\rm H_2O}=0.9892~{\rm r/cm}^3.$

- 115. .Относительное понижение упругости паров воды над раствором хлорида натрия при температуре 7 °C равно 0,1 %. определить осмотическое давление этого раствора, если кажущаяся степень диссоциации соли составляет 95 %. $d_{\rm H_{2O}} = 0,9998 \; {\rm г/cm}^3$.
- 116. При температуре 30 °C упругости паров бензола и толуола над индивидуальными веществами соответственно равны 120,2 и 36,7 мм.рт.ст. Определить общее давление пара над раствором и парциальные упругости компонентов, если раствор приготовлен смешением 100 г бензола (C₆H₆) и 100 г толуола (C₆H₅CH₃).
- 117. Упругость пара амальгамы олова, содержащей 1,142 г олова в 10 г ртути, равна 85,7 кПа. Давление же пара индивидуальной ртути при той же температуре составляет 102,14 кПа. Считая, что система подобна идеальной, определить молекулярную массу олова.
- 118. Сплав натрия и калия в широком интервале температур подчиняется закону Рауля. Определить парциальные упругости паров металлов над сплавом, содержащим 78 г калия и 46 г натрия при температуре 500 °C, если упругости паров металлов при этой же температуре над индивидуальными металлами соответственно равны $p_{Na}^0 = 0,47$ кПа и $p_K^0 = 1,89$ кПа. Найти также общее давление над расплавом.
- 119. Жидкий сплав эквимолекулярных количеств сурьмы и олова в широком интервале температур удовлетворительно подчиняется закону Рауля. Определить парциальные давления компонентов в таком сплаве при температуре 1000 °C, если для индивидуальных веществ при этой температуре $p_{Sb}^0 = 4,48\,\Pi a$; $p_{Sn}^0 = 1,6\,\Pi a$.
- 120. При температуре 25 °C давление водяного пара равно 3,14 кПа Сколько глицерина ($C_3H_8O_3$) нужно растворить в 100 г воды, чтобы понизить давление пара на 0,132 кПа?
- 121. Давление паров воды при температуре 10 °C составляет 1,216 кПа. Определить давление паров 25 %-ного раствора сахара при той же температуре.
- 122. Какова должна быть массовая доля раствора сахара ($C_{12}H_{22}O_{11}$) в воде, чтобы давление паров над раствором было на 1 % ниже давления пара над водой.
- 123. Сколько граммов глицерина ($C_3H_8O_3$) нужно растворить в 90 г воды при 30 °C, чтобы понизить давление пара на 266,5 Па? p_1^0 =4,24 кПа.
- 124. Сколько граммов нафталина ($C_{10}H_8$) нужно растворить в 100 г бензола (C_6H_6) при 20 0 C, чтобы понизить давление пара на 666,4 Па? $p_{C_6H_6}^0 = 9954$ н/м².
- 125. Температура плавления железа 1530 К, теплота плавления 236,814 кДж/моль. Определить криоскопическую постоянную железа и найти температуру кристаллизации железа, содержащего 1 % марганца.

- 126. Температура замерзания бензола 5,5 °C, а раствора, содержащего 0,2242 г камфары в 30,55 г бензола 3,466 °C. определить молекулярную массу камфары, если $K_{\kappa p}(C_6H_6) = 5,16 \; \text{K} \cdot \text{кг} \cdot \text{моль}^{-1}, \; \Delta_{\text{Im}}H_{C_6H_6}^0 = 1172,45 \; \text{кДж/моль}$
- 127. Температура кипения CS_2 равна 46,2 °C. Раствор, содержащий 0,217 г серы в 19,18 г CS_2 кипит при 47,073 °C. Определить, сколько атомов содержит молекула растворенной серы, если для CS_2 K_{96} =2,37 K кг/моль.
- 128. Раствор, содержащий 0,506 г HIO₃ в 22,84 г. С₂H₅OH, кипит при температуре 78,54 °C. Определить кажущуюся степень диссоциации кислоты, если температура кипения спирта 78,40 °C. К $_{56}$ (С $_2$ H $_5$ OH) = 1,12 К \cdot кг/моль; $\Delta_{\rm nn}$ H $_{\rm C_2H_5OH}^0$ = -42,18 кДж/моль .
- 129. Определить, сколько граммов глицерина должно быть прибавлено к 100 г воды, чтобы получившийся раствор не замерзал до температуры -5 °C. $K_{KP}(H_2O) = 1,86K \cdot K\Gamma/MOJE; \ \Delta_{\Pi J}H_{H_2O}^O = 6 \ K \ / MOJE$
- 130. При какой температуре закипит раствор соли в воде, если относительное понижение упругости пара этого раствора равно 1 %. $K_{96}(H_2O) = 0.52~\text{K·кг/моль};~\Delta_{\text{исп}}H_{H_2O}^0 = 4816~\text{Дж/моль}.$
- 131. Определить при какой температуре закипит раствор нитрата калия, если его осмотическое давление при температуре 3 0 C равно 1,5 атм. Считать, что молярные и моляльные концентрации практически одинаковы. $d_{\rm H_2O}=1~{\rm \Gamma/cm^3};~\Delta_{\rm исп}\,{\rm H}_{\rm H_2O}^{0}=4816~{\rm Дж/моль}.$
- 132. Если в 125 г расплава хлорида натрия растворить 31 г сульфата бария, то температура кристаллизации полученного раствора понизится на 37,2 °C. Определить степень диссоциации BaSO₄ в расплаве. $K_{\rm kp}({\rm NaCl}) = 19,7~{\rm K}\cdot{\rm kr/monb},~T_{\rm nn}({\rm NaCl}) = 1074~{\rm K};~\Delta_{\rm nn}H^0_{\rm NaCl} = 28,2~{\rm k}\mbox{Дж/моль}.$
- 133. Температура плавления олова 232 °C. При растворении 1,5163 г меди в 440 г расплавленного олова температура кристаллизации последнего понижается до 230,08 °C. Определить молекулярную массу меди в расплаве. $K_{\kappa p}(Sn) = 35,59 \, \text{K} \cdot \text{кг/моль}; \quad \Delta_{\text{пл}} H_{Sn}^0 = 7,03 \, \text{кДж/моль}.$
- 134. Определить кажущуюся степень диссоциации хлорида калия в водном растворе, содержащем 0,2752 г КС1 в 23,50 г воды, если понижение температуры кристаллизации составляет 0,563 К. К $_{\rm KP}$ (${\rm H_2O}$) = 1,86 К · ${\rm \kappa}$ г/моль; $\Delta_{\rm nn}$ ${\rm H_{H_2O}^0}$ = 6 кДж/моль.
- 135. Раствор, содержащий 0,171 г H_2SO_4 в 100 г воды, замерзает при температуре 0,054 °C. Определить изотонический коэффициент. $\Delta_{\rm nn}H_{\rm H_2O}^0=6$ кДж/моль.

136. Какова концентрация (выраженная в массовых процентах) водного раствора глю-козы ($C_6H_{12}O_6$), если он замерзает при -1 °C. $K_{\kappa p}(H_2O)=1,86\,\mathrm{K}\cdot\mathrm{kr}/\mathrm{моль};\Delta_{\mathrm{III}}H_{\mathrm{H}_2O}^0=6\,\mathrm{k}\mathrm{J}\mathrm{k}/\mathrm{моль}.$

137. Какова температура плавления сплава железа с углеродом, если сплав содержит 6 % углерода. Криоскопическая постоянная для железа $K_{\kappa p}$ =13,18 $K \cdot \kappa r$ /моль. Температура кристаллизации железа = 1530 °C; теплота плавления 236,814 кДж/моль.

138. Определить температуру плавления сплава железа с кремнием, если сплав содержит 14,5 %(масс.) кремния. Криоскопическая постоянная для железа $K_{\kappa p}$ =13,18 $K \cdot \kappa \Gamma$ /моль. Температура кристаллизации железа = 1530 °C; теплота плавления 236,814 кДж/моль.

5. Электропроводность растворов электролитов

5.1. Краткие теоретические сведения

Электрическая проводимость растворов вызывается подвижностью ионов, образующихся при диссоциации электролитов в полярных растворителях. Перенос электричества в растворах электролитов осуществляется ионами. Как и все проводники, растворы электролитов характеризуются определенным сопротивлением. Электрическое сопротивление однородного проводника любого вида прямо пропорционально его длине l (м) и обратно пропорционально его сечению S (м²):

$$R = \rho \frac{l}{S} ,$$

где ρ - удельное сопротивление, Ом·м.

Величина, обратная сопротивлению, называется электропроводностью:

$$W=\frac{1}{R}.$$

В электрохимии различают несколько видов электропроводности, однако при проведении кондуктометрических исследований ограничиваются использованием удельной и эквивиалентной электропроводностей.

Удельная электропроводность представляет собой величину, обратную удельному сопротивлению:

$$\chi = \frac{1}{\rho}$$
.

Величина χ ($Om^{-1} \cdot m^{-1} = Cm \cdot m^{-1}$) представляет собой электропроводность единичного объема раствора (1 m^3), помещенного между параллельными электродами единичной площади (1 m^2), находящимися на единичном расстоянии (1 m).

Эквивалентная электропроводность представляет собой отношение удельной электропроводности к нормальной концентрации электролита:

$$\lambda = \frac{\chi \cdot 10^{-3}}{C_{\odot} \text{ PKB}/\text{II}}.$$

Эквивалентная электропроводность ($\text{См} \cdot \text{м}^2 \cdot \text{экв.}^{-1}$) равна проводимости раствора, содержащего один эквивалент электролита, помещенного между параллельными электродами на расстоянии 1 м друг от друга.

При бесконечно большом разбавлении эквивалентная электропроводность стремится к своему наибольшему значению λ^{∞} . В этом случае:

$$\lambda^{\infty} = \lambda_{+}^{\infty} + \lambda_{-}^{\infty}.$$

таким образом, предельная эквивалентная электропроводность равна сумме предельных эквивалентных электропроводностей ионов (закон Кольрауша). Предельные эквивалентные электропроводности ионов приводятся в справочной литературе.

Отношение эквивалентной электропроводности раствора сильного электролита к ее предельному значению λ^{∞} называют коэффициентом электропроводности (эту величину еще называют «кажущейся степенью диссоциации»)

$$f_{\lambda} = \frac{\lambda}{\lambda^{\infty}}$$
.

Отношение эквивалентной электропроводности раствора слабого электролита к ее предельному значению λ^{∞} представляет собой степень диссоциации:

$$\alpha = \frac{\lambda}{\lambda^{\infty}}.$$

5.2. Пример решения задачи

Пример 6. Удельная электропроводность раствора нитрата серебра составляет 9,47· 10^{-3} См·см $^{-1}$, эквивалентная электропроводность этого раствора равна 94,7 См·см 2 ·экв. $^{-1}$. Определить молярную концентрацию раствора и коэффициент электропроводности, если электропроводность бесконечно разбавленного раствора 116,5 См·см 2 ·экв $^{-1}$.

Решение. 1. Нормальную концентрацию раствора нитрата серебра определим по формуле:

$$C_N = \frac{\chi \cdot 10^3}{\lambda} = \frac{9,47 \cdot 10^{-3} \cdot 10^3}{94.7} = 0,1$$
 экв/л.

Обменный эквивалент AgNO₃ = 1, следовательно $C_N = C_M = 0.1$ моль/л.

2. Коэффициент электропроводности рассчитаем по уравнению (20):

$$f_{\lambda} = \frac{\lambda}{\lambda} = \frac{94.7}{116.5} = 0.81.$$

3. Переведем концентрацию из моль/л в г/л по формуле:

$$C_{\text{r/n}} = MC_M = 36,5 \cdot 0,15 = 5,475$$
 г/л.

Пример 7. Удельная электропроводность раствора пропионовой кислоты C_2H_5COOH концентрацией 0,135 моль/л равна 4,79· 10^{-2} См/м. Рассчитайте эквивалентную электропроводность раствора, константу диссоциации кислоты и pH раствора, если предельные электропроводности H^+ и $C_2H_5COO^-$ равны 349,8 См·см²·моль $^{-1}$ и 37,2 См·см²·моль $^{-1}$ соответственно.

Решение

$$\lambda^0 = \lambda_{\text{H}^+}^0 + \lambda_{\text{C2H5O}^-}^0 = 349.8 + 37.2 = 387.0 \text{ Cm} \cdot \text{cm}^2 / \text{9kb}.$$

$$\lambda = \frac{\chi}{C} = \frac{4.79 \cdot 10^{-2}}{0.135} = 3.55 \text{ Cm} \cdot \text{cm}^2 / \text{9kb}.$$

$$\alpha = \frac{\lambda}{\lambda^0} = \frac{3,55}{387,0} = 0,099$$

$$K = \frac{\alpha^2 C}{1 - \alpha} = \frac{0,009^2 \cdot 0,135}{1 - 0,009} = 1,15 \cdot 10^{-5}$$

$$[H^+] = \alpha \cdot C = 1,24 \cdot 10^{-3}$$

$$pH = -lg[H^+] = -lg1,24 \cdot 10^{-3} = 2,91$$

Пример 8. Удельная электропроводность насыщенного раствора $BaCO_3$ в воде при $18~^{\circ}C$ равна $2,540\cdot10^{-3}$ См/м. Удельная электропроводность воды $4,5\cdot10^{-5}$ См/м. Предельные электропроводности ионов Ba^{2+} и CO_3^{2-} при $18~^{\circ}C$ равны соответственно 55 и 66 См·см 2 /экв. Рассчитайте растворимость $BaCO_3$ в воде при $18~^{\circ}C$ в моль/л, считая соль полностью диссоциированной.

Решение

$$\chi_{\mathrm{Ba_2CO_3}} = \chi_{\mathrm{p-p}} - \chi_{\mathrm{H_2O}} = 2,54 \cdot 10^{-3} - 4,5 \cdot 10^{-5} = 2,495 \cdot 10^{-3} \text{ Cm/m}$$

$$\lambda_{\mathrm{BaCO_3}}^0 = \lambda_{\mathrm{Ba}^2}^0 + \lambda_{\mathrm{CO_3}^2}^0 = 55 + 66 = 121 \,\mathrm{Cm} \cdot \mathrm{cm}^2 / \mathrm{экв.} = 0,0121 \,\mathrm{Cm} \cdot \mathrm{m}^2 / \mathrm{экв.}$$

$$S = \frac{\chi}{\lambda_{\mathrm{BaCO_3}}^0} = \frac{2,495 \cdot 10^{-3}}{1,21 \cdot 10^{-2}} = 0,206 \,\,\mathrm{экв./m^3} = 1,03 \cdot 10^{-4} \,\,\mathrm{моль/л}$$

5.3. Задачи для решения

- 139. Удельная электропроводность раствора с массовой долей нитрата магния 5 % при 18 °C равна 4,38 См/м, а его плотность 1,038 г/см³. Рассчитайте эквивалентную электропроводность раствора и кажущуюся степень диссоциации соли в растворе. Эквивалентные электропроводности катиона и аниона при бесконечном разведении соответственно равны 44,6 и 62,6 См \cdot см²/экв.
- 140. Определить нормальность раствора $CuSO_4$, если его удельная электропроводность составляет 1,89· 10^{-2} См/см, а предельные эквивалентные электропроводности катиона и аниона соответственно равны 56,6 и 80,0 См·см²/экв. Кажущуюся степень диссоциации принять равной 99,5 %.
- 141. Определить молярную концентрацию раствора нитрата магния, если его удельная электропроводность составляет $4,4\cdot10^{-1}$ См/см, предельные эквивалентные электропроводности катиона и аниона соответственно равны 53 и 71,46 См·см²/экв., кажущаяся степень диссоциации составляет 59,1 %.
- 142. Определить молярную концентрацию раствора сульфата натрия, если его удельная электропроводность составляет $5.3\cdot10^{-2}$ См/см, предельные эквивалентные электропроводности катиона и аниона соответственно равны 50.1 и 80 См·см²/экв., кажущаяся степень диссоциации составляет 89.1 %.
- 143. Определить массовую долю хлорида кальция в растворе (d = $1,08 \text{ г/см}^3$), если его удельная электропроводность составляет $1,14\cdot10^{-1}$ См/см, а предельные эквивалентные электропроводности катиона и аниона соответственно равны 59,5 и 76,35 См·см²/экв.. Кажущуюся степень диссоциации принять равной 99 %.
- 144. Определить массовую долю гидроксида калия в растворе (d = 1,14 г/см³), если его удельная электропроводность составляет $4,23\cdot10^{-1}$ См/см, предельная эквивалентная электропроводность раствора КОН равна 271,8 См·см²/экв., кажущаяся степень диссоциации равна 58,9 %.

- 145. Определить массовую долю хлорида натрия в растворе (d = 1,0,34 г/см³), если его удельная электропроводность составляет $6,72\cdot10^{-2}$ См/см, предельная эквивалентная электропроводность раствора NaCl равна 126,45 См·см²/экв., кажущаяся степень диссоциации равна 69,8 %.
- 146. Сопротивление раствора сульфата меди между электродами площадью 4 см² на расстоянии 7 см равно 230 Ом. Определить нормальную концентрацию данного раствора, если предельные эквивалентные электропроводности катиона и аниона соответственно равны 56,6 и 80,0 См⋅см²/экв. Кажущуюся степень диссоциации принять равной 99,8 %.
- 147. Определить массовую долю хлорида стронция в растворе (d = 1,0925 г/см³), если его удельная электропроводность составляет $8,86\cdot10^{-2}$ См/см, предельная эквивалентная электропроводность равна 135,75 См·см²/экв., кажущаяся степень диссоциации равна 69,8%.
- 148. Эквивалентная электропроводность раствора серной кислоты плотностью $1,30 \text{ г/см}^3$ при 18°C равна $70 \text{ См} \cdot \text{см}^2/\text{экв.}$, удельная электропроводность составляет 0,736 См/см. Вычислить массовую долю серной кислоты в растворе.
- 149. 10. Определить pH раствора иодоводородной кислоты, если при его предельная эквивалентная электропроводность равна $381,5 \text{ Cm} \cdot \text{cm}^2/\text{экв.}$, а удельная электропроводность 0,405 н. раствора 0,1332 Cm/cm.
- 150. Для эквивалентной электропроводности амида азотной кислоты, растворённого в воде при 15 $^{\circ}$ С были получены следующие данные

С, моль/л	0,03	0,015	0,0075	0,00375	0,001875
λ, См·см²/экв.	1,017	1,446	2,052	2,89	4,053

- $\lambda^0(H^+) = 298 \text{ Cm} \cdot \text{cm}^2/\text{экв.}$, $\lambda^0(\text{Na}^+) = 39.9 \text{ Cm} \cdot \text{cm}^2/\text{экв.}$ и $\lambda^0(\text{NaHN}_2\text{O}_2) = 39 \text{ Cm} \cdot \text{cm}^2/\text{экв.}$ Определить константу равновесия для диссоциации амида азотной кислоты ($H_2N_2O_2 = H^+ + HN_2O_2^-$).
- 151. Эквивалентная электропроводность бесконечно разбавленных растворов КСІ, KNO_3 и $AgNO_3$ при 25 °C равна соответственно 149,9; 145,0 и 133,4 $Cm \cdot cm^2$ /экв. Какова эквивалентная электропроводность бесконечно разбавленного раствора AgCI при 25 °C?
- 152. Эквивалентная электропроводность бесконечно разбавленных растворов соляной кислоты, хлорида натрия и ацетата натрия при 25 $^{\circ}$ C равна соответственно 425,0; 128,1 и 91,0 Cm·cm²/экв. Какова эквивалентная электропроводность бесконечно разбавленного раствора уксусной кислоты при 25 $^{\circ}$ C?
- 153. Удельная электропроводность 4% водного раствора H_2SO_4 при 18 °C равна 0,168 См/см, плотность раствора 1,026 г/см³. Рассчитайте эквивалентную электропроводность раствора.
- 154. Удельная электропроводность насыщенного раствора AgCl в воде при 25 °C равна 2,28· 10^{-4} См/м, а удельная электропроводность воды 1,16· 10^{-4} См/м. Рассчитайте растворимость AgCl в воде при 25 °C в моль/л.
- 155. Удельная электропроводность водного раствора KI равна 89,00 См/м, а раствора KCI той же концентрации 186,53 См/м. Удельная электропроводность раствора, содержащего обе соли, равна 98,45 См/м. Рассчитайте долю KCI в растворе
- 156. Эквивалентная электропроводность водного раствора сильного электролита при 25 °C равна 109,9 См·см²/моль при концентрации $6,2\cdot10^{-3}$ моль/л и 106,1 См·см²/моль при концентрации $1,5\cdot10^{-2}$ моль/л. Какова эквивалентная электропроводность раствора при бесконечном разбавлении?
- 157. Эквивалентная электропроводность водного раствора слабой одноосновной кислоты при 25 °C равна $16,0 \, \text{См} \cdot \text{см}^2/\text{моль}$ при концентрации $1,0 \cdot 10^{-2} \, \text{моль/л}$ и $48,4 \, \text{См} \cdot \text{см}^2/\text{моль}$ при концентрации $1,0 \cdot 10^{-3} \, \text{моль/л}$. Рассчитайте эквивалентную электропроводность раствора при бесконечном разбавлении и константу диссоциации кислоты.

- 158. Константа диссоциации гидроксида аммония равна $1,79 \cdot 10^{-5}$ моль/л. Рассчитайте концентрацию NH₄OH, при которой степень диссоциации равна 0,01, и эквивалентную электропроводность раствора при этой концентрации.
- 159. Эквивалентная электропроводность $1,59\cdot10^{-4}$ моль/л раствора уксусной кислоты при 25 °C равна 12,77 См·см²/моль. Рассчитайте константу диссоциации кислоты и pH раствора.
- 160. Константа диссоциации масляной кислоты C_3H_7COOH равна $1,74\cdot 10^{-5}$. Эквивалентная электропроводность раствора при разведении 1024 л/моль равна 41,3 См·см²/моль. Рассчитайте степень диссоциации кислоты и концентрацию ионов водорода в этом растворе, а также эквивалентную электропроводность раствора при бесконечном разведении.
- 161. Эквивалентная электропроводность раствора гидроксида этиламмония $C_2H_5NH_3OH$ при бесконечном разведении равна 232,6 См·см²/моль. Рассчитайте константу диссоциации гидроксида этиламмония, эквивалентную электропроводность раствора, степень диссоциации и концентрацию ионов гидроксила в растворе при разведении 16 л/моль, если удельная электропроводность раствора при данном разведении равна $1,312\cdot10^{-3}$ См/см.
- 162. Растворимость гексацианоферрата (II) кобальта (II) определяли методом прямой кондуктометрии. При 25 °C насыщенной раствор соли имеет удельную электропроводность 2,06 См/м, удельная электропроводность воды составила 4,01 См/м. Предельные эквивалентные электропроводности Co^{2+} и $\text{Fe}(\text{CN})_6^{4-}$ равны 43 и 111 См·см²/экв. соответственно. Вычислить растворимость соли.
- 163. По зависимости эквивалентной электропроводности хлората серебра от концентрации определить его эквивалентную электропроводность при бесконечном разведении

С, мэкв./л	1,0256	1,3694	2,9782	3,2500
λ, Cm·cm ² /экв.	123,43	122,94	121,14	120,95

164. Какое заключение может быть сделано о полноте диссоциации перхлората кадмия в разбавленном водном растворе при 25 $^{\circ}$ С из приведённых ниже данных по его эквивалентной электропроводности

С, экв./л	0,1	0,08	0,06	0,04	0,02	0,01	0,005	0,001
λ , См·см ² /экв.	92,64	94,21	96,22	98,93	103,3	107,15	110,45	115,74