КОНТРОЛЬНАЯ РАБОТА

Целью контрольной работы является исследование САУ углом тангажа посредством статического автопилота. Для выполнения контрольной работы следует использовать печатные издания 1 и 2 [Л1, Л2] из списка литературы в программе дисциплины.

Структурная схема системы представлена на рис. 3.6 [Л1]. Исходные данные для расчёта коэффициентов САУ соответствуют параметрам продольного канала ЛА и берутся из табл. 1.1 , где тип самолёта определяется по первой букве фамилии студента: А–И – лёгкий самолёт, Й–С – средний самолёт, Т–Я – тяжёлый самолёт. Высота полёта задаётся второй буквой фамилии: А–Н –первый столбец параметров самолёта, П–Я –второй столбец (столбец «Н=12 км» для тяжёлого самолёта не используется).

Требуется:

- 1) рассчитать коэффициенты автопилота;
- 2) определить значения статических ошибок относительно управляющего U_3 и возмущающего f_2 воздействий.

Козффи- инсит	Легкий самолет		Средний самолет		Тяжелый самолет		
	H=11 κM M=0,9 τ _a =3,8 c	$H = 15 \text{ KM}$ $M = 2, 5$ $\tau_a = 2, 5 \text{ c}$	H=0 (посалка)	H=4 KM M=0.65 ta=2.9c	H=0 (посад- ка)	$H-8 \text{ KM} - M-0.8 \text{ t}_{a}=2.5 \text{ c}$	H=12 κ; M=0,9 τ _a =3 c
n_{11} n_{12} n_{13} n_{14} n_{21} n_{22} n_{23} n_{24} n_{31} n_0 n_{32} n_{33} n_{34} n_B n_A	$ \begin{vmatrix} 0,024\\ -0,11\\ 0,2\\ -0,0004\\ -0,4\\ 2,4\\ 0\\ -0,012\\ 0\\ 0,4\\ 38\\ 2,45\\ -0,053\\ 49\\ 0,022\\ \end{vmatrix} $	$\begin{array}{c} -0,01 \\ -0,08 \\ 0,2 \\ -0,0004 \\ -0,68 \\ 2,5 \\ 0 \\ -0,013 \\ -0,8 \\ 0,7 \\ 16 \\ 2,2 \\ -0,055 \\ 100 \\ 0,02 \\ \end{array}$	0,12 -0,28 0,4 -0,8 2,4 0,02 -0 0,59 6,6 1,67 -15,2 0,019	0,019 0,02 0,3 -0,00044 -0,6 2,66 0 -0,013 0,6 10,6 1,7 -0,055 24,5 0,021	0,12 -0,12 0,3 -0,65 2,35 0,015 -0 0,9 8 2,35 -0,9 8,4 0,018	0,026 -0,025 0,1 -0,0004 -0,36 3 0 -0,011 0 1,17 4,2 2,5 -0,05 28 0,02	0,048 $-0,079$ $0,17$ $-0,000$ $-0,68$ $2,4$ 0 $-0,012$ $-1,2$ $0,68$ 36 $2,42$ $-0,05$ 46 $0,02$

Методические указания

3. 4. УПРАВЛЕНИЕ УГЛОМ ТАНГАЖА ПОСРЕДСТВОМ СТАТИЧЕСКОГО АВТОПИЛОТА

Рассмотрим статическую систему автоматического управления углом тангажа (рис. 3. 6), включающую контур управления угловой скоростью и контур управления углом тангажа. Передаточная функция ЛА взята в предположении постоянства скорости полета. На структурной схеме не показаны внешние возму-

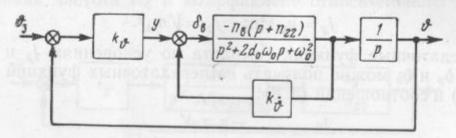


Рис. 3. 6. Структурная схема системы управления углом тангажа

щения f_2 и f_3 , действующие на ЛА. Закон управления системы берем в виде

$$\delta_{\mathbf{a}} = k_{\theta} (\theta - \theta_{\mathbf{a}}) + k_{\hat{\mathbf{a}}} p\theta, \tag{3.13}$$

где ϑ_3 — заданное значение угла тангажа.

Решая уравнение (3.13) совместно с уравнениями (1.22), получим

$$p^{3} + a_{1}p^{2} + a_{2}p + a_{3}) \vartheta = (b_{0}p + a_{3}) \vartheta_{3} + (n_{0}p + n_{32}) f_{2} + (p + n_{22}) f_{3},$$

$$(3.14)$$

гле

$$a_{1} = 2d_{0}\omega_{0} + n_{\mathrm{B}}k_{\hat{\theta}}; \quad a_{2} = \omega_{0}^{2} + n_{\mathrm{B}}(k_{\theta} + n_{22}k_{\hat{\theta}});$$

$$a_{3} = n_{\mathrm{B}}n_{22}k_{\ell}; \quad b_{0} = n_{\mathrm{B}}k_{\theta}.$$

Выбор параметров системы управления следует производить из условий неискаженного воспроизведения заданного угла танкажа ϑ_3 при слабом реагировании на возмущения f_2 и f_3 . Если передаточные числа k_{ϑ} и k_{ϑ} выбрать достаточно большими, то реакция системы на возмущения f_2 и f_3 будет слабой.

Будем осуществлять выбор передаточных чисел k_{ϑ} и k_{ϑ} в два этапа. Сначала выберем значение передаточного числа k_{ϑ} из условия заданного переходного процесса во внутреннем контуре (см. рис. 3.6), передаточная функция для которого имеет вид

$$\frac{\dot{\vartheta}}{y} = \frac{n_{\rm B} (p + n_{22})}{p^2 + 2d\omega p + \omega^2}, \qquad (3.15)$$

где

$$\omega^2 = \omega_0^2 + n_{\rm B} n_{22} k_{\dot{\theta}}; \quad 2d\omega = 2d_0 \omega_0 + n_{\rm B} k_{\dot{\theta}}.$$

Выберем такое значение передаточного числа k_{\emptyset} , чтобы коэффициент затухания был оптимальным, например, $d\!=\!1$. Находим

$$k_b = \frac{1}{n_b} \left[2d^3 n_{20} \left(1 + \sqrt{1 - \frac{2d_0 \omega_0}{d^2 n_{22}} + \frac{\omega_0^2}{d^2 n_{22}^2}} \right) - 2d_0 \omega_0 \right]. \quad (3.16)$$

Для внешнего замкнутого контура (см. рис. 3. 6) можно напи-

$$\frac{0}{0_0} = \frac{n_0 k_0 \left(p + n_{22}\right)}{p^0 + A_1 \omega p^2 + A_2 \omega^2 p + \omega^3},$$
(3. 17)

$$A_1 = 2d$$
; $A_2 = 1 + \frac{n_n k_0}{\omega^2}$; $\omega^3 = n_n k_0 n_{22}$.

Павестно, что параметры Вышнеградского A_1 и A_2 соответствуют оптимальному переходному процессу, если они меняются пределах от 2 до 3. Поскольку A_1 определяется коэффициентом затухания d, то следует задать A_2 . Взяв A_2 =3, найдем

$$k_{\theta} = \frac{8n_{22}^2}{n_n}; \quad \omega = 2n_{22}.$$
 (3.18)

Следовательно, если известны параметры ЛА, то по формулам (3.16) и (3.18) можно найти значения передаточных чисел и и кы и собственную частоту ω.

Коэффициент демпфирования внутреннего контура берётся равным единице:

d=1.

FAR

Коэффициент Вышнеградского A_1 определяется коэффициентом d, a коэффициент A_2 следует взять равным 2,5: A_2 =2,5.

Статические ошибки определяются из уравнения (3.14) при подстановке в него p=0. Статическая ошибка относительно управляющего (задающего) воздействия υ_3 определяется как отклонение от единицы выходной величины υ при υ_3 =1 и нулевых возмущающих воздействиях f_2 = f_3 =0.

Статическая ошибка относительно возмущающего воздействия f_2 определяется как реакция выходной величины υ на возмущающее воздействие f_2 =1 при нулевом управляющем воздействии υ_3 =0 и нулевом возмущающем воздействии f_3 =0.

Пример.

Пусть уравнение САУ имеет вид

$$(T_0p^3+T_0p^2+p+1) \upsilon = (T_1p+1) \upsilon_3+(T_2p+1)f_2+(T_3p+1)f_3.$$

Тогда статические ошибки будут равны:

1) Относительно управляющего воздействия ошибка равна $1-|\epsilon|$, где ϵ определяется из уравнения (p=0)

$$(T_00^3+T_00^2+0+1) = (T_10+1) 1+(T_20+1) 0+(T_30+1) 0.$$

2) Относительно возмущающего воздействия ошибка ε определяется из уравнения (p=0) $(T_00^3+T_00^2+0+1)$ ε = (T_10+1) $0+(T_20+1)$ $1+(T_30+1)$ 0.