КОНТРОЛЬНАЯ РАБОТА 6

Задача 1. В ящике имеются a белых и b черных шаров. Найти вероятность того, что:

- а) первый вынутый из ящика шар будет белым;
- б) все вынутые из ящика k шары будут черными.

Значения a, b и k по вариантам следующие:

Вариант	1	2	3	4	5	6	7	8	9	10
a	6	3	5	10	4	6	3	5	8	7
b	5	7	8	5	66	8	7	10	4	5
k	3	4	2	3	4	5	3	4	3	3

Задача 2.

Вариант 3. Три автомата производят детали, поступающие на общий склад. Производительности первого, второго и третьего автоматов относятся как 2:3:5. Вероятность того, что деталь, изготовленная первым автоматом, отличного качества, равна 0,9, для второго и третьего автоматов эти вероятности соответственно равны 0,8 и 0,85. Найти вероятность того, что наудачу взятая на складе деталь отличного качества.

Задача 3. При установившемся технологическом процессе вероятность изготовления детали, удовлетворяющей требованиям стандарта, равна p. Найти вероятность того, что среди взятых наудачу n деталей требованиям стандарта удовлетворяют:

а) ровно k деталей; б) хотя бы одна деталь.

Значения p, n, k, l по вариантам следующие:

Вариант	1	2	3	4	5	6	7	8	9	10
p	0,9	0,85	0,8	0,75	0,7	0,8	0,65	0,9	0,7	0,9
n	6	7	4	5	6	6	5	4	7	6
k	3	4	2	3	4	3	2	2	3	3
1	40	30	30	20	30	40	30	40	40	40

Какова вероятность того, что среди 10n деталей удовлетворяют требованиям стандарта ровно 10k деталей и от l до 10k деталей?

Задача 4. Случайная величина *X* задана интегральной функцией распределения:

$$F(x) = \begin{cases} 0, & x < 0, \\ \frac{x^2}{k^2}, & 0 \le x \le k, \\ 1, & x > k, \end{cases}$$

где k-3; $\alpha = 0.2k$, $\beta = 0.8k$.

Найти дифференциальную функцию (плотность вероятности), математическое ожидание и дисперсию X, а также вероятность того, что X примет значение, заключенное в интервале (α , β). Построить графики интегральной и дифференциальной функций.

Задача 5. По заданному математическому ожиданию a и среднему квадратичному отклонению σ нормально распределенной случайной величины X найти вероятность того, что X примет значение, принадлежащее интервалу α , β . Значения a, σ , α , β по вариантам следующие:

Вариант	1	2	3	4	5	6	7	8	9	10
a	0,9	0,85	0,8	0,75	0,7	0,8	0,65	0,9	0,7	0,9
σ	6	7	4	5	6	6	5	4	7	6
α	3	4	2	3	4	3	2	2	3	3
β	40	30	30	20	30	40	30	40	40	40