ВВЕДЕНИЕ

В горной и обогатительной промышленности широко распространены вибрационные машины различного назначения (транспортеры, дробилки, грохоты и др.). Теория колебаний разрабатывает аналитические методы, используемые для описания динамики всех этих машин.

Изложены основы теории колебаний систем с двумя степенями свободы. Приведены типовые примеры построения расчетных моделей типовых колебательных систем с двумя степенями свободы на основе составления уравнения Лагранжа II рода. «Методические указания...» содержат варианты расчетно-графических работ (РГР) для самостоятельного решения.

Цель выполнения РГР состоит в том, чтобы научить будущих горных инженеров строить расчетные модели колебательных систем, определять законы и параметры колебаний и на этой основе определять уровни их динамической нагруженности.

«Методические указания...» предназначены для студентов специальностей 150402 «Горные машины и оборудование», 150404 «Металургические машины и оборудование».

1. Механические малые колебания систем с двумя степенями свободы

Свободные колебания. Рассмотрим консервативную механическую систему с двумя степенями свободы. Положение всех точек системы при этом определяется с помощью двух обобщенных координат $-q_1$ и q_2 , а скорости всех точек выражаются через соответствующие обобщенные скорости \dot{q}_1 и \dot{q}_2 . Вблизи положения равновесия кинетическая энергия системы с двумя степенями свободы определяется выражением

$$T = \frac{a_{11}}{2}\dot{q}_1^2 + a_{12}\dot{q}_1\dot{q}_2 + \frac{a_{22}}{2}\dot{q}_2^2, \tag{1.1}$$

т.е. является квадратичной формой обобщенных скоростей. Виду того, что кинетическая энергия по своему смыслу положительна, должны выполняться следующие неравенства

$$a_{11} > 0, a_{22} > 0, a_{11}a_{22} - a_{12}^2 > 0.$$
 (1.2)

Потенциальная энергия вблизи положения равновесия определяется выражением

$$\Pi = \frac{c_{11}}{2}q_1^2 + c_{12}q_1q_2 + \frac{c_{22}}{2}q_2^2,$$
(1.3)

т.е. является квадратичной формой обобщенных координат. Здесь c_{11} , c_{12} , c_{22} - квазиупругие коэффициенты:

$$c_{11} = \frac{\partial^2 \prod}{\partial q_1^2} \bigg|_{\substack{q_1 = 0 \\ q_2 = 0}}; c_{12} = \frac{\partial^2 \prod}{\partial q_1 \partial q_2} \bigg|_{\substack{q_1 = 0 \\ q_2 = 0}}; c_{22} = \frac{\partial^2 \prod}{\partial q_2^2} \bigg|_{\substack{q_1 = 0 \\ q_2 = 0}}$$

В положении равновесия $\prod_{\substack{q_1=0\\q_2=0}}=0$. Обобщенные координаты будем отсчитывать от положения равновесия $(q_1=0,\,q_2=0)$. Их отклонения от положения равновесия предполагаются малыми. Обобщенные

силы, соответствующие потенциальным силам, в положении равновесия также равны нулю $\frac{\partial \Pi}{\partial x} = \frac{\partial \Pi}{\partial x} =$

$$Q^{(\Pi)}_{q_1=0}\Big|_{\substack{q_1=0\\q_2=0}} = -\frac{\partial \Pi}{\partial q_1}\Big|_{\substack{q_1=0\\q_2=0}} = 0 \quad , Q^{(\Pi)}_{2}\Big|_{\substack{q_1=0\\q_2=0}} = -\frac{\partial \Pi}{\partial q_2}\Big|_{\substack{q_1=0\\q_2=0}} = 0 . \tag{1.4}$$

Положение равновесия может быть устойчивым и неустойчивым. Если колебательная система находится в устойчивом положении равновесия, то после малого возмущения обобщенных координат система возвращается к этому положению ($q_1 = 0, q_2 = 0$) после некоторого колебательного движения. Возмущение неустойчивого положения равновесия приводит к непериодическому уходу системы. Таким образом, малые колебания системы возможны только около устойчивого положения равновесия. В положении устойчивого равновесия потенциальная энергия системы имеет строгий минимум (теорема Дирихле), который определяется условиями

$$c_{11} > 0, c_{22} > 0, c_{11}c_{22} - c_{12}^2 > 0,$$
 (1.5)

т.е. вблизи положения равновесия потенциальная энергия положительна.

В случае системы с двумя степенями свободы уравнения Лагранжа II рода имеют вид

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_1} - \frac{\partial T}{\partial q_1} + \frac{\partial \Pi}{\partial q_1} = 0, \quad \frac{d}{dt}\frac{\partial T}{\partial \dot{q}_2} - \frac{\partial T}{\partial q_2} + \frac{\partial \Pi}{\partial q_2} = 0.$$

Подставляя в последние уравнения выражения (1.1) и (1.3) для кинетической и потенциальной энергии системы, получим систему двух обыкновенных дифференциальных уравнений

$$\begin{cases}
a_{11}\ddot{q}_1 + a_{12}\ddot{q}_2 + c_{11}q_1 + c_{12}q_2 = 0 \\
a_{12}\ddot{q}_1 + a_{22}\ddot{q}_2 + c_{12}q_1 + c_{22}q_2 = 0
\end{cases}$$
(1.6)

которые и являются уравнениями малых колебаний рассматриваемой системы.

Частное решение системы (1.6) запишем в виде

$$q_1 = A\sin kt, \, q_2 = B\sin kt, \tag{1.7}$$

где k- неизвестная частота колебаний, A и B – неизвестные постоянные (амплитуды колебаний). После подстановки решения (1.7) в уравнения (1.6), получим систему двух однородных алгебраических уравнений относительно постоянных A и B

$$\begin{cases} (c_{11} - k^2 a_{11}) A + (c_{12} - k^2 a_{12}) B = 0\\ (c_{12} - k^2 a_{12}) A + (c_{22} - k^2 a_{22}) B = 0 \end{cases}$$
(1.8)

Система уравнений (1.6) имеет отличные от нуля решения только в том случае, если ее определитель равен нулю

$$\Delta(k) = \begin{vmatrix} c_{11} - k^2 a_{11} & c_{12} - k^2 a_{12} \\ c_{12} - k^2 a_{12} & c_{22} - k^2 a_{22} \end{vmatrix} = 0 \tag{1.9}$$

или

$$(a_{11}a_{22} - a_{12}^2)k^4 - (a_{11}c_{22} + a_{22}c_{11} - 2a_{12}c_{12})k^2 + c_{11}c_{22} - c_{12}^2 = 0.$$
 (1.10)

Можно показать, что дискриминант биквадратного уравнения (1.10) положителен. Совместно с условиями (1.2) и (1.4) это означает, что уравнение (1.10) имеет два вещественных положительных корня относительно k^2 – квадраты круговых частот свободных колебаний (собственных частот)

$$k_1^2 > 0, k_2^2 > 0.$$

Таким образом, рассматриваемые колебания являются двухчастотными, причем $k_1 > k_2$. Этим частотам соответствуют две формы колебаний

 $q_1 = A_1 \sin k_1 t$, $q_2 = B_1 \sin k_1 t$ - 1 - я форма колебаний,

$$q_1 = A_2 \sin k_2 t$$
, $q_2 = B_2 \sin k_2 t$ - 2 - я форма колебаний.

Постоянные A_1 , B_1 , A_2 , B_2 не являются независимыми и из системы (1.8) не могут быть определены однозначно. Определены (например из первого уравнения (1.18)), могут быть лишь их отношения n_1 и n_2 -коэффициенты первой и второй форм колебаний

$$n_1 = \frac{B_1}{A_1} = -\frac{c_{11} - k_1^2 a_{11}}{c_{12} - k_1^2 a_{12}}, \quad n_2 = \frac{B_2}{A_2} = -\frac{c_{11} - k_2^2 a_{11}}{c_{12} - k_2^2 a_{12}}.$$
 (1.11)

Можно показать, что $n_1 > 0$ и $n_2 < 0$. Таким образом, 1-я форма свободных колебаний является одноузловой, 2-я форма - двухъузловой.

Найденным частотам свободных колебаний соответствует общее решение

$$q_{1} = A_{1} \sin(k_{1}t + \alpha_{1}) + A_{2} \sin(k_{2}t + \alpha_{2}),$$

$$q_{2} = n_{1} A_{1} \sin(k_{1}t + \alpha_{1}) + n_{2} A_{2} \sin(k_{2}t + \alpha_{2})'$$
(1.12)

где A_1 , B_1 , α_2 , произвольные постоянные интегрирования, определяемые из начальных условий.

Вынужденные колебания. Пусть на рассматриваемую колебательную систему действуют возмущающие силы, изменяющиеся со временем по гармоническому закону

$$F_1 = F_{10} \sin pt, F_2 = F_{20} \sin pt, ..., F_n = F_{n0} \sin pt.$$

Обобщенные силы Q_1 , Q_2 определяются как коэффициенты при вариациях обобщенных координат q_1 и q_2 в выражении для элементарной работы

$$\delta A = Q_1 \delta q_1 + Q_2 \delta q_2$$
.

Эти силы будут также гармоническими функциями времени

$$Q_1 = Q_{10} \sin pt, Q_2 = Q_{20} \sin pt.$$

Тогда неоднородные уравнения Лагранжа II рода будут иметь вид

$$\frac{d}{dt}\frac{\partial T}{\partial \dot{q}_1} - \frac{\partial T}{\partial q_1} + \frac{\partial \Pi}{\partial q_1} = Q_1, \quad \frac{d}{dt}\frac{\partial T}{\partial \dot{q}_2} - \frac{\partial T}{\partial q_2} + \frac{\partial \Pi}{\partial q_2} = Q_2,$$

или после подстановки в них выражений (1.1) и (1.3) для кинетической и потенциальной энергий

$$\begin{cases} a_{11}\ddot{q}_1 + a_{12}\ddot{q}_2 + c_{11}q_1 + c_{12}q_2 = Q_1 = Q_{10} \sin pt \\ a_{12}\ddot{q}_1 + a_{22}\ddot{q}_2 + c_{12}q_1 + c_{22}q_2 = Q_2 = Q_{20} \sin pt \end{cases}$$
(1.13)

Решение системы (1.13) будем искать в виде вынужденных колебаний

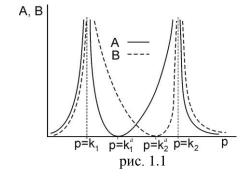
$$q_1 = A \sin pt$$
, $q_2 = B \sin pt$,

где p- частота вынужденных колебаний, A и B- амплитуды колебаний. Для определения амплитуд колебаний получим неоднородную систему, левые части уравнений, которой аналогичны (1.8)

$$\begin{cases} (c_{11} - p^2 a_{11}) A + (c_{12} - p^2 a_{12}) B = Q_{10} \\ (c_{12} - p^2 a_{12}) A + (c_{22} - p^2 a_{22}) B = Q_{20} \end{cases}$$

Решая последнюю систему по методу Крамера, будем иметь

$$A = \frac{\begin{vmatrix} Q_{10} & c_{12} - p^2 a_{12} \\ Q_{20} & c_{22} - p^2 a_{22} \end{vmatrix}}{\Delta(p)}, \quad B = \frac{\begin{vmatrix} c_{11} - p^2 a_{11} & Q_{10} \\ c_{12} - p^2 a_{12} & Q_{20} \end{vmatrix}}{\Delta(p)}.$$
(1.14)



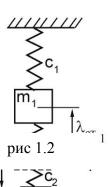
Здесь $\Delta(p)$ - определитель (9) на частоте возмущения. Поскольку k_1 и k_2 являются корнями уравнения $\Delta(k)\!=\!0$, то при $p\!\to\!k_1$ или $p\!\to\!k_2$ амплитуды вынужденных колебаний A и B неограниченно возрастают и в системе будет иметь место резонанс. Те значения частоты возмущения p, при которых амплитуды A и B в (1.14) обращаются в ноль, называются частотами

антирезонанса. На рис. 1.1 построены резонансные кривые для каждой степени свободы.

Задание. Определить частоты малых свободных колебаний, а также формы свободных колебаний системы с двумя степенями свободы, пренебрегая силами сопротивления, массами пружин и моментами инерции скручиваемых валов. Составить общее решение, определив постоянные интегрирования из начальных условий. Рассмотреть вынужденные колебания в системе под действием заданной возмущающей силы $F = F_0 \cos pt$ или момента $M = M_0 \cos pt$. Сила всегда приложена в центре масс тела. Вычислить обобщенные силы, соответствующие выбранным обобщенным координатам и связанные с действием заданного возмущающего усилия. Используя полученные для свободных колебаний однородные уравнения Лагранжа, составить дифференциальные уравнения движения, описывающие вынужденные колебания системы в обобщенных координатах. Построить резонансную кривую для каждой обобщенной координаты. Маховики и шестерни (за исключением косозубых) считать сплошными однородными дисками, стержни - тонкими однородными. Пружины деформируются только вдоль своих осей. Во всех случаях качение дисков происходит без проскальзывания.

Пример 1. Система состоит (рис. 1.2) из двух тел, соединенных пружинами между собой и с неподвижным основанием.

Дано: $m_1 = 4$ кг, $m_2 = 4$ кг $c_1 = 3 \cdot 10^3$ H/м, $c_2 = 2 \cdot 10^3$ H/м.



Начальные условия: телу с массой m_1 сообщается скорость 10 м/с, направленная вниз. Для расчета вынужденных колебаний считать, что система находится под действием гармонической возмущающей силы $F_1 = F_0 \cos pt$, приложенной к телу с массой m_1 и направленной вниз, $F_0 = 100$ H.

За обобщенные координаты примем x_1 и x_2 — вертикальные перемещения грузов, отсчитываемые от положений статического равновесия тел (O_1 и O_2). Соответствующие обобщенные скорости - \dot{x}_1 и \dot{x}_2 . Кинетическая энергия системы:

$$T = \frac{m_1 \dot{x}_1^2}{2} + \frac{m_2 \dot{x}_2^2}{2} \quad . \tag{1.15}$$

Потенциальная энергия:

$$\Pi = \frac{c_1}{2} \left[\left(x_1 + \lambda_{cm1} \right)^2 - \lambda_{cm1}^2 \right] + \frac{c_2}{2} \left[\left(x_2 - x_1 + \lambda_{cm2} \right)^2 - \lambda_{cm2}^2 \right] (1.16) - m_1 g \ x_1 - m_2 g \ x_2.$$

Здесь первые два слагаемых соответствуют энергии упругой деформации пружин, вторые два — потенциальной энергии поля силы тяжести; $\lambda_{cm1}, \lambda_{cm2}$ -

статические деформации пружин.

Используя (1.4), получаем систему для определения λ_{cm1} , λ_{cm2} :

$$\begin{split} \frac{\partial \prod}{\partial x_1}\bigg|_{\substack{x_1=0\\x_2=0}} &= c_1\lambda_{cm\,1} - c_2\lambda_{cm\,2} - m_1g = 0;\\ \frac{\partial \prod}{\partial x_2}\bigg|_{\substack{x_1=0\\x_2=0}} &= c_2\lambda_{cm\,2} - m_2g = 0. \end{split}$$

Отсюда: $\lambda_{cm1} = \frac{(m_1 + m_2)g}{c_1}$, $\lambda_{cm2} = \frac{m_2 g}{c_2}$. После подстановки этих выражений в (1.16) и преобразований,

получим

$$\Pi = \frac{c_1}{2}x_1^2 + \frac{c_2}{2}(x_2 - x_1)^2 = \frac{c_1 + c_2}{2}x_1^2 - c_2x_1x_2 + \frac{c_2}{2}x_2^2.$$
(1.17)

Свободные колебания. После подстановки выражений для кинетической (1.15) и потенциальной (1.17) энергий в уравнения Лагранжа, получим дифференциальные уравнения свободных колебаний системы:

$$m_1\ddot{x}_1 + (c_1 + c_2)x_1 - c_2x_2 = 0;$$

$$m_2\ddot{x}_2 - c_2x_1 + c_2x_2 = 0.$$
(1.18)

Решение системы будем искать в виде :

$$x_1 = A \sin kt$$
, $x_2 = B \sin kt$.

Для определения постоянных А и В получим систему, аналогичную (1.8):

$$\begin{cases} (c_1 + c_2 - k^2 m_1) A - c_2 B = 0 \\ -c_2 A + (c_2 - k^2 m_2) B = 0. \end{cases}$$
 (1.19)

Частотное уравнение, согласно (9) и (10):

$$k^4 - \left(\frac{c_2}{m_2} + \frac{c_1 + c_2}{m_1}\right)k^2 + \frac{c_1c_2}{m_1m_2} = 0$$

или, после подстановки значений масс и жесткостей

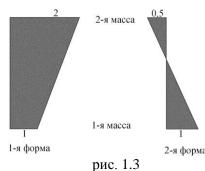
$$k^4 - 1.75 \cdot 10^3 k^2 + 0.375 \cdot 10^6 = 0$$
.

Как биквадратное это уравнение имеет два вещественных корня $k_1^2 = 250c^{-2}, k_2^2 = 1550c^{-2}$. Соответственно, собственные частоты:

$$k_1 = 15.8 c^{-1}, k_2 = 38.7 c^{-1}.$$

Коэффициенты первой и второй форм по (1.11):

$$n_1 = \frac{c_1 + c_2 - m_1 k_1^2}{c_2} = 2$$
, $n_2 = \frac{c_1 + c_2 - m_1 k_2^2}{c_2} = -0.5$.



2-я форма

Таким образом, при колебаниях системы по 1-ой форме оба тела отклоняются от положения равновесия в одном направлении; при этом отклонение тела массой m_2 в два раза превышает отклонение тела массой m_1 . При колебаниях по 2-ой форме, тела отклоняются в противоположные стороны и, наоборот, отклонение тела массой m_1 в два раза превышает отклонение тела массой m_2 (рис.1.3).

Найденным частотам свободных колебаний соответствует общее решение

$$x_1 = A_1 \sin(15.8t + \alpha_1) + A_2 \sin(38.7t + \alpha_2),$$

$$x_2 = 2A_1 \sin(15.8t + \alpha_1) - 0.5A_2 \sin(38.7t + \alpha_2).$$
(1.20)

По начальным условиям ($x_1\big|_{t=0}=0,\,\dot{x}_1\big|_{t=0}=10,\,x_2\big|_{t=0}=0,\,\dot{x}_2\big|_{t=0}=0$) определим постоянные интегрирования A_1 , B_1 , α_1 , α_2 :

$$A_{1} \sin \alpha_{1} + A_{2} \sin \alpha_{2} = 0,$$

$$15,8A_{1} \cos \alpha_{1} + 38,7A_{2} \cos \alpha_{2} = 10,$$

$$2A_{1} \sin \alpha_{1} - 0,5B_{1} \sin \alpha_{2} = 0,$$

$$2 \cdot 15,8A_{1} \cos \alpha_{1} - 0,5 \cdot 38,7A_{2} \cos \alpha_{2} = 0.$$

Решив систему, получим:

$$A_1=0,13$$
 m; $A_2=0,2$ m; $\alpha_1=\alpha_2=0$.

Подставив значения постоянных интегрирования в решения (1.19), получим окончательный вид общего решения задачи вынужденных колебаний.

колебания. Элементарная работа сил, приложенных Вынужденные первому второму $\delta A = F_1 \delta x_1 + F_2 \delta x_2 (F_2 = 0)$ и, следовательно, обобщенные силы $Q_1 = F_1$, $Q_2 = 0$. Уравнения Лагранжа для вынужденных колебаний (1.13) будут иметь вид (правые части этих уравнений совпадают с правыми частями уравнений (1.18))

$$m_1\ddot{x}_1 + (c_1 + c_2)x_1 - c_2x_2 = F_0 \sin pt;$$

 $m_2\ddot{x}_2 - c_2x_1 + c_2x_2 = 0.$

Решение последней системы будем искать в виде

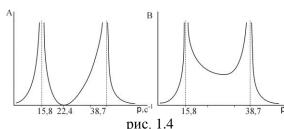
$$x_1 = A \sin pt$$
, $x_2 = B \sin pt$.

При этом для определения амплитуд вынужденных колебаний А и В получим неоднородную систему

$$\begin{cases} (c_1 + c_2 - p^2 m_1) A - c_2 B = F_0 \\ -c_2 A + (c_2 - p^2 m_2) B = 0. \end{cases}$$

Решая ее, получим

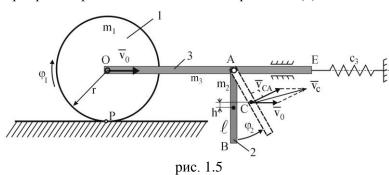
$$A = \frac{c_2 - m_2 p^2}{\Delta(p)} F_0, \quad B = \frac{c_2}{\Delta(p)} F_0. \tag{1.21}$$



Здесь $\Delta(p)$ - определитель правой части системы (1.21) (определитель однородной системы (1.19) на частоте возмущения). По формулам (1.21) построим резонансные кривые A(p) и B(p) (рис. 1.4).

Из условия A=0 определим частоту антирезонанса $k^a = \sqrt{\frac{c_2}{m_2}} = 22.4 c^{-1}$.

Пример 2. Система состоит (рис. 1.5) из сплошного цилиндра 1 и двух стержней: горизонтального ОЕ (3) и шарнирно закрепленного в точке А стержня АВ (2).



Дано: $m_1 = 6$ кг, $m_2 = 4$ кг, $m_3 = 2$ кг, $c_2 = 2 \cdot 10^2$ Н/м, $\ell = 1$ м, r = 2 м. Начальные условия: телу 3 сообщается скорость 2 м/с, направленная вправо.

Для расчета вынужденных колебаний считать, что система находится под действием гармонической возмущающей силы $F = F_0 \cos pt$, приложенной к стержню ОЕ и направленной вправо, $F_0 = 40$ H.

За обобщенные координаты примем ф1

и ϕ_2 –угловые перемещения цилиндра и стержня AB, соответственно. В данном случае в положении статического равновесия значения ϕ_1 = ϕ_2 =0 и пружина не деформирована. Соответствующие обобщенные скорости - $\dot{\phi}_1$ и $\dot{\phi}_2$. Кинетическая энергия системы (тела 1 и 2 совершают плоскопараллельное движение, тело 3 – поступательное; кинетическая энергия тела 3, совершающего сложное движение определяется по теореме Кёнига):

$$T = \frac{m_1 v_0^2}{2} + \frac{J_{z1} \dot{\varphi}_1^2}{2} + \frac{m_3 v_0^2}{2} + \frac{m_2 v_C^2}{2} + \frac{J_{Cz2} \dot{\varphi}_2^2}{2}. \tag{1.22}$$

Здесь $v_A = v_0 = \dot{\varphi}_1 r$,

$$\begin{split} &v_C^2 = v_0^2 + v_{CA}^2 - 2v_0v_{CA}\cos(\pi - \varphi_2) = \left(r\dot{\varphi}_1\right)^2 + \left(\frac{\ell}{2}\dot{\varphi}_2\right)^2 + 2r\dot{\varphi}\frac{\ell}{2}\dot{\varphi}_2\cos\varphi_2 = \\ &= \left(r\dot{\varphi}_1\right)^2 + \left(\frac{\ell}{2}\dot{\varphi}_2\right)^2 + 2r\dot{\varphi}_1\frac{\ell}{2}\dot{\varphi}_2\left(1 - \frac{\varphi_2^2}{2}\right) = \left[r\dot{\varphi}_1 + \frac{\ell}{2}\dot{\varphi}_2\right]^2. \end{split}$$

В последней формуле использовано, что $\cos \varphi_2 \approx 1 - \frac{\varphi_2^2}{2}$, ввиду предполагаемой малости колебаний. Здесь следует удерживать лишь слагаемые второй степени по обобщенной скорости. После подстановки в (1.22) выражений для скоростей v_0 , v_C и моментов инерции, а затем значений всех исходных данных, получим окончательное выражение для кинетической энергии системы

$$T = 30\dot{\varphi}_1^2 + 2\dot{\varphi}_1\dot{\varphi}_2 + 1, 2\dot{\varphi}_2^2.$$

Потенциальная энергия состоит из энергии деформированной пружины и энергии в поле силы тяжести стержня АВ:

$$\Pi = \frac{1}{2}c_3\Delta^2 - m_2gh = \frac{1}{2}c_3(r\varphi_1)^2 + m_2g\frac{\ell}{2}(1 - \cos\varphi_2) =$$

$$= \frac{1}{2}c_3r^2\varphi_1^2 - m_2g\frac{\ell}{2}\frac{\varphi_2^2}{2} = 4 \cdot 10^2 \cdot \varphi_1^2 + 5 \cdot \varphi_2^2.$$

Свободные колебания. После подстановки выражений для кинетической и потенциальной энергий в уравнения Лагранжа, получим дифференциальные уравнения свободных колебаний системы:

$$60\ddot{\varphi}_1 + 2\ddot{\varphi}_2 + 800\varphi_1 = 0;$$

$$2\ddot{\varphi}_1 + 24\ddot{\varphi}_2 + 10\varphi_2 = 0.$$
(1.23)

Решение системы будем искать в виде

 $\varphi_1 = A \sin kt$, $\varphi_2 = B \sin kt$.

Для определения постоянных А и В получим систему:

$$\begin{cases} (8 \cdot 10^2 - 60k^2)A - 2k^2B = 0\\ -2k^2A + (10 - 2, 4k^2)B = 0. \end{cases}$$
 (1.24)

Частотное уравнение, согласно (9) и (10):

$$k^4 - 18k^2 + 57,1 = 0$$
.

Собственные частоты:

решение

$$k_1 = 2 c^{-1}, k_2 = 3.7 c^{-1}.$$

Коэффициенты первой и второй форм из первого уравнения (1.24):

$$n_1 = \frac{\left(8 \cdot 10^2 - 60k_1^{\ 2}\right)}{2k_1^2} = 66$$
; $n_2 = \frac{\left(8 \cdot 10^2 - 60k_2^{\ 2}\right)}{2k_2^2} = -1{,}22$. Таким образом,

при колебаниях системы по 1-ой форме цилиндр 1 практически неподвижен, а колебания совершает стержень AB. При колебаниях по 2-ой форме, угловые колебания цилиндра и стержня AB близки по величине, но противоположны по направлению (рис. 1.6).

Найденным частотам свободных колебаний соответствует общее е

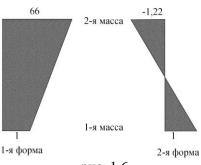


рис. 1.6

$$\varphi_1 = A_1 \sin(2t + \alpha_1) + A_2 \sin(3.7t + \alpha_2),
\varphi_2 = 66 \cdot A_1 \sin(2t + \alpha_1) - 1.22 A_2 \sin(3.7t + \alpha_2).$$
(1.25)

По начальным условиям $(\varphi_1\big|_{t=0}=0,\dot{\varphi}_1\big|_{t=0}=1\,c^{-1},\,x_2\big|_{t=0}=0,\,\dot{x}_2\big|_{t=0}=0)$ определим постоянные интегрирования $A_I,\,B_I,\,\alpha_I,\,\alpha_2$:

$$\begin{split} A_1 \sin \alpha_1 + A_2 \sin \alpha_2 &= 0, \\ 2A_1 \cos \alpha_1 + 3,7A_2 \cos \alpha_2 &= 1, \\ 66 \cdot A_1 \sin \alpha_1 - 1,22A_2 \sin \alpha_2 &= 0, \\ 66 \cdot 2A_1 \cos \alpha_1 - 1,22 \cdot 3,7A_2 \cos \alpha_2 &= 0. \end{split}$$

Решив систему, получим:

$$A_1=0.01$$
 m; $A_2=0.3$; $\alpha_1=\alpha_2=0$.

Подставив значения постоянных интегрирования в решения (1.25), получим окончательный вид общего решения задачи вынужденных колебаний.

Вынужденные колебания. Элементарная работа сил, приложенных к первому и второму телу $\delta A = F_1 \, r \delta \, \varphi_1 + M_2 \, \delta \, \varphi_2 \, (M_2 = 0)$ и, следовательно, обобщенные силы $Q_1 = F_1 r$, $Q_2 = 0$. Уравнения Лагранжа для вынужденных колебаний (1.13) будут иметь вид

$$60\ddot{\varphi}_1 + 2\ddot{\varphi}_2 + 800\varphi_1 = F_0 r \sin pt;$$

$$2\ddot{\varphi}_1 + 24\ddot{\varphi}_2 + 10\varphi_2 = 0.$$

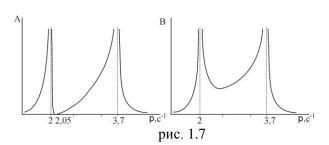
Решение последней системы будем искать в виде

$$x_1 = A \sin pt$$
, $x_2 = B \sin pt$.

При этом для определения амплитуд вынужденных колебаний А и В получим неоднородную систему

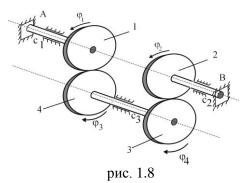
$$\begin{cases} (8 \cdot 10^2 - 60p^2)A - 2p^2 B = F_0 r \\ -2p^2 A + (10 - 2, 4p^2)B = 0. \end{cases}$$

Решая ее, получим



$$A = \frac{(10 - 2.4p^2)}{\Lambda(p)} F_0 r, \ B = \frac{2p^2}{\Lambda(p)} F_0 r.$$
 (1.26)

По формулам (1.26) построим резонансные кривые A(p) и B(p) (рис. 1.7). Из условия A=0 определим частоту антирезонанса $k^a = \sqrt{\frac{10}{24}} = 2,05 c^{-1}$.



Пример 3. Система состоит (рис. 1.8) из четырех шестеренок 1 – 4 (однородных сплошных дисков), закрепленных на упругих валах и попарно (1-4 и 2-3) входящих в зацепление. По концам А и В вала заделаны. Дано: массы шестеренок: $m_1 = 300$ кг, $m_2 = 200$ кг, $m_3 = 100$ кг, $m_4 = 50$ кг; радиусы шестеренок: $r_1=0.5$ м, $r_2=0.7$ м, $r_3=0.3$ м, $r_4=0.5$ м; крутильные жесткости валов: c_1 =100 H м, c_2 =150 H м, c_3 =200 H м. В положении статического равновесия валы недеформированы.

Начальные условия: шестерне 1 сообщается угловая скорость 2 1/с, направленная против ч.с.

Для расчета вынужденных колебаний считать, что система находится действием возмущающего гармонического $M = M_0 \cos pt$, приложенного к шестерне 1 и направленного против

ч.с., $M_0 = 40$ H.

За обобщенные координаты примем φ_1 и φ_2 -угловые перемещения шкивов 1 и 2, соответственно. В данном случае в положении статического равновесия значения $\phi_1 = \phi_2 = 0$. Соответствующие обобщенные скорости - $\dot{\phi}_1$ и $\dot{\phi}_2$. Кинетическая энергия системы:

$$T = \frac{J_1 \, \dot{\phi}_1^2}{2} + \frac{J_2 \, \dot{\phi}_2^2}{2} + \frac{J_3 \, \dot{\phi}_3^2}{2} + \frac{J_4 \, \dot{\phi}_4^2}{2} \; .$$

Здесь J_1 , J_2 , J_3 , J_4 – моменты инерции шестеренок 1 - 4, а $\dot{\varphi}_3 = \frac{r_1}{r_2} \dot{\varphi}_1$, $\dot{\varphi}_4 = \frac{r_1}{r_2} \dot{\varphi}_1$.

После подстановки в (27) выражений для моментов инерции, а затем значений всех исходных данных, получим окончательное выражение для кинетической энергии системы

$$T = 21.9 \dot{\varphi}_1^2 + 36.75 \dot{\varphi}_2^2.$$

Потенциальная энергия состоит из энергии деформированных валов (крутильных пружин):

$$\Pi = \frac{1}{2}c_1\varphi_1^2 + \frac{1}{2}c_2\varphi_2^2 + \frac{1}{2}c_3(\varphi_3 - \varphi_4)^2 = \frac{1}{2}c_1\varphi_1^2 + \frac{1}{2}c_2\varphi_2^2 + \frac{c_3}{2}(\frac{r_1}{r_3}\varphi_2 - \frac{r_1}{r_4}\varphi_1)^2 = 329\cdot\varphi_1^2 - 334\varphi_1\varphi_2 + 354\cdot\varphi_2^2$$

Свободные колебания. После подстановки выражений для кинетической и потенциальной энергий в уравнения Лагранжа, получим дифференциальные уравнения свободных колебаний системы:

$$43.8\ddot{\varphi}_1 + 658\varphi_1 - 334\varphi_2 = 0;$$

$$73.5\ddot{\varphi}_1 - 334\varphi_1 + 708\varphi_2 = 0.$$

Решение системы будем искать в виде:

$$\varphi_1 = A \sin kt$$
, $\varphi_2 = B \sin kt$.

Для определения постоянных А и В получим систему:

$$\begin{cases}
(658 - 43.8k^2)A - 334B = 0 \\
-334A + (708 - 73.5k^2)B = 0.
\end{cases}$$
(1.27)

Частотное уравнение:

$$k^4 - 24.7k^2 + 110.1 = 0$$
.

Собственные частоты:

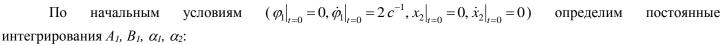
$$k_1 = 2.4 c^{-1}, k_2 = 4.3 c^{-1}$$

Коэффициенты первой и второй форм определим из первого уравнения (1.28):
$$n_1 = \frac{\left(658 - 43,8k_1^{\ 2}\right)}{334} = 1,2 \; ; \; n_2 = \frac{\left(658 - 43,8k_2^{\ 2}\right)}{334} = -0,5 \; .$$

Таким образом, при колебаниях системы по 1-ой форме шестерни 1 и 2 совершают колебания близкие по амплитуде, отклоняясь одновременно от положения равновесия в одном направлении. При колебаниях по 2-ой форме, они отклоняются в противоположных направлениях и амплитуда углового отклонения шестерни 2 в два раза больше, чем шестерни 1 (рис. 1.9).

Найденным частотам свободных колебаний соответствует общее решение

$$\varphi_1 = A_1 \sin(2,4t + \alpha_1) + A_2 \sin(4,3t + \alpha_2),
\varphi_2 = 1.2 \cdot A_1 \sin(2,4t + \alpha_1) - 0.5 A_2 \sin(4,3t + \alpha_2).$$
(1.28)



$$A_{1} \sin \alpha_{1} + A_{2} \sin \alpha_{2} = 0,$$

$$2,4A_{1} \cos \alpha_{1} + 4,3A_{2} \cos \alpha_{2} = 2,$$

$$1,2 \cdot A_{1} \sin \alpha_{1} - 0,5A_{2} \sin \alpha_{2} = 0,$$

$$1,2 \cdot 2,4A_{1} \cos \alpha_{1} - 0,5 \cdot 4,3A_{2} \cos \alpha_{2} = 0.$$

Решив систему, получим:

$$A_1=0.5 \text{ m}; B_1=0.7; \alpha_1=\alpha_2=0.$$

Подставив значения постоянных интегрирования в решение (1.28), получим окончательный вид общего решения задачи вынужденных колебаний.

Вынужденные колебания. Элементарная работа сил, приложенных к первому второму телу $\delta A = M_1 \delta \, \varphi_1 + M_2 \, \delta \, \varphi_1 (M_2 = 0)$ и, следовательно, обобщенные силы $Q_I = M_I$, $Q_2 = 0$. Уравнения Лагранжа для вынужденных колебаний (1.13) будут иметь вид

$$43.8\ddot{\varphi}_1 + 658\varphi_1 - 334\varphi_2 = M_0 \sin pt;$$

$$73.5\ddot{\varphi}_1 - 334\varphi_1 + 708\varphi_2 = 0.$$

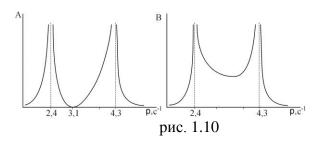
Решение последней системы будем искать в виде

$$x_1 = A \sin pt$$
, $x_2 = B \sin pt$.

При этом для определения амплитуд вынужденных колебаний А и В получим неоднородную систему

$$\begin{cases} (658-43.8k^2)A - 334B = M_0 \\ -334A + (708-73.5k^2)B = 0. \end{cases}$$

Решая ее, получим



$$A = \frac{(708 - 73.5k^2)}{\Delta(p)} M_0, \ B = \frac{334}{\Delta(p)} M_0.$$
 (1.29)

1,2

1-я форма

2-я масса

1-я масса

рис. 1.9

2-я форма

По формулам (1.30) построим резонансные кривые A(p) и B(p) (рис. 1.10).

 $k^a = \sqrt{\frac{708}{73.5}} = 3,1 \, c^{-1}$.

2. Задания представлены вариантами 1 – 30.

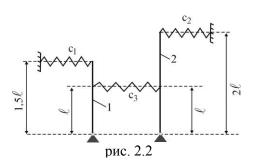
рис. 2.1

ВАРИАНТ 1

Система состоит из двух упругозакрепленных тел — одно (1) установлено на катки и может перемещаться вдоль горизонтальной плоскости, другое (2) — на катках перемещается по наклонной плоскости первого. Массой и размерами катков пренебрегаем. В положении равновесия пружина с жесткостью c_1 недеформирована, пружина с жесткостью c_2 — деформирована.

Дано: $m_1 = 8$ кг, $m_2 = 2$ кг, $c_1 = 2 \cdot 10^3$ H/м, $c_2 = 1.5 \cdot 10^3$ H/м.

Начальные условия: телу 1 сообщается скорость 2м/с, направленная влево; возмущающая сила приложена к телу 1 и направлена вправо, P_0 = 100~H.



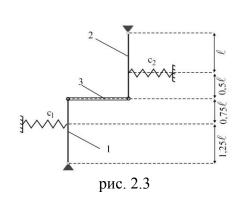
ВАРИАНТ 2

Система состоит из двух упругозакрепленных тел - однородных стержней длиной 2ℓ и $1,5\ell$, способных вращаться в вертикальной плоскости относительно осей шарниров. Стержни 1 и 2 в положении равновесия занимают вертикальное положение, пружины в этом положении не деформированы.

Дано: $\ell=0.5$ м, $m_1=5$ кг, $m_2=2$ кг, $c_1{=}6\cdot10^2$ H/м, $c_2{=}8\cdot10^2$ H/м, $c_3{=}7\cdot10^2$ H/м

Начальные условия: стержню 1 сообщается угловая скорость 5 c^{-1} , направленная против ч.с.;

возмущающий момент приложен к телу 1, M_0 = 10 Hм.

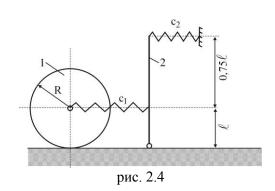


ВАРИАНТ 3

Система состоит из двух упругозакрепленных тел - однородных стержней длиной $1,5\ell$ и 2ℓ , способных вращаться в вертикальной плоскости относительно осей шарниров. Стержни соединены жесткой безмассовой вставкой 3. Стержни 1 и 2 в положении равновесия занимают вертикальное положение, пружины в этом положении не деформированы Дано: $\ell=0,5$ м, $m_1=5$ кг, $m_2=2$ кг, $c_1=8\cdot10^2$ H/м, $c_2=6\cdot10^2$ H/м, $c_3=7\cdot10^2$ H/м.

Начальные условия: стержню 1 сообщается угловая скорость 1 c^{-1} , направленная против ч.с.;

возмущающий момент приложен к телу 1, M_0 = 10 Hм.



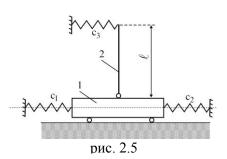
ВАРИАНТ 4

Система состоит из двух тел –диска 1 и однородного стержня 2 длиной $1,75\ell$, способного вращаться в вертикальной плоскости относительно оси шарнира. В положении равновесия стержень 2 вертикален и обе пружины не деформированы.

Дано: $\ell=0,3$ м, R=0,3 м, $m_1=4$ кг, $m_2=1$ кг, $c_1=4\cdot 10^3$ H/м, $c_2=3\cdot 10^3$ H/м. *Начальные условия*: телу 1 сообщается скорость 4м/с, направленная влево; возмущающая сила приложена к телу 1 и направлена вправо, $P_0=100$ H..

Система состоит из двух телустановленного на катки и способного вращаться в оси шарнира, жестко связанного с стержень 2 вертикален и пружины Дано: $\ell=0,3$ м, R=0,3 м, R=0,

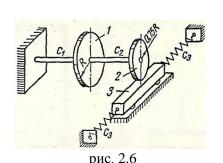
ВАРИАНТ 5



упругозакрепленного тела 1, однородного стержня (2) длиной ℓ , вертикальной плоскости относительно телом 1. В положении равновесия не деформированы.

кг, $m_2 = 1$ кг, $c_1 = 6 \cdot 10^2$ H/м, $c_2 = 4 \cdot 10^2$ условия: телу 1 сообщается скорость 10

телу 1 и направлена вправо, $P_0 = 100 \text{ H}$.

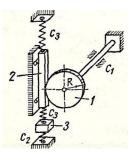


ВАРИАНТ 6

Система состоит из трех тел — маховика 1, шестерни 2 и тела 3, установленного на невесомые катки, на которых оно может перемещаться в горизонтальной плоскости. Тела 1 и 2 связаны упругими (на кручение) осями между собой и неподвижной стенкой. В положении равновесия все пружины не деформированы.

Дано: R = 0,4 м, $m_1 = 30$ кг, $m_2 = 30$ кг, $m_3 = 10$ кг, $c_1 = 2 \cdot 10^4$ Нм, $c_2 = 1 \cdot 10^4$ Нм, $c_3 = 1 \cdot 10^4$ Н/м. *Начальные условия*: маховику 1 сообщается угловая скорость 4 1/с, направленная против ч.с.; возмущающий момент приложен к маховику 1, $M_0 = 20$ Нм.

ВАРИАНТ 7



government of the second

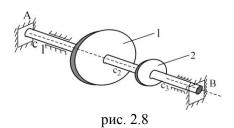
рис. 2.7

Система состоит из трех тел – тела 3, шестерни 1, тела (бруска) 2, связанного с помощью невесомых катков с вертикальной плоскостью, вдоль которой оно может перемещаться. Шестерня 1 связана упругой (на кручение) осью с неподвижной стенкой. В положении равновесия все пружины оказываются деформированы, т.е. получат статические удлинения $\lambda_{\text{ст}\,i}$.

Дано: R = 0.4 м, $m_1 = 40$ кг, $m_2 = 20$ кг, $m_3 = 10$ кг, $c_1 = 3 \cdot 10^4$ Hм, $c_2 = 1 \cdot 10^4$ H/м, $c_3 = 1.5 \cdot 10^4$ H/м

Начальные условия: шестерни 1 сообщается угловая скорость 10 1/c, направленная против ч.с.; возмущающий момент приложен к шестерне 1, M_0 = 20 H_M .

ВАРИАНТ 8



Система состоит из двух тел —маховиков 1 и 2, насаженных на упругий вал. На концах A и B вал жестко закреплен. Жесткости на кручение участков вала - c_1 , c_2 , c_3 . Массой вала пренебрегаем. В положении равновесия вал не деформированы.

Дано: R = 0.2 м, $m_1 = 50$ кг, $m_2 = 60$ кг, $c_1 = 2 \cdot 10^4$ Hм, $c_2 = 3 \cdot 10^4$ Hм, $c_3 = 1 \cdot 10^4$ Hм.

Начальные условия: маховику 1 сообщается угловая скорость 20 1/c, направленная против ч.с.; возмущающий момент приложен к маховику 1, M_0 = 50 Hм.

ВАРИАНТ 9

Система состоит из четырех тел — шестеренок 1, 2, 3, 4. Одним из концов ось шестерни 1 жестко закреплена. Жесткости на кручение осей шестеренок 1, 3 - 4 - c_1 , c_2 . Массой осей пренебрегаем. Ось шестерни 2 — абсолютно жесткая. В положении равновесия пружины- оси не деформированы.

Дано: R = 0.35 м, $m_1 = 40$ кг, $m_2 = 60$ кг, $m_3 = 30$ кг, $m_4 = 40$ кг, $c_1 = 1.10^4$ Hм, $c_2 = 3.10^4$ Hм.

Начальные условия: шестерни 4 сообщается угловая скорость 40 1/c, направленная против ч.с.; возмущающий момент приложен к шестерни1, $M_0=20$ Нм.

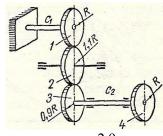


рис. 2.9

рис. 2.10

ВАРИАНТ 10

Система состоит из четырех тел –двух упругозакрепленных одинаковых дисков радиуса R и массой m_3 , горизонтальной балки 1, длинной ℓ и однородного стержня 2 длиной b, способного вращаться в вертикальной плоскости относительно оси шарнира, жестко связанного с балкой 1. В положении равновесия стержень 2 вертикален и пружины не деформированы. Проскальзывания между дисками и балкой нет.

Дано: $\ell=3$ м, R=0.5 м, a=0.2 м, $m_1=15$ кг, $m_2=10$ кг, $m_3=20$ кг , $c_1=6\cdot 10^2$ H/м, $c_2=4\cdot 10^2$ H/м, $c_3=8\cdot 10^2$ H/м.

Начальные условия: телу 1 сообщается скорость 10 м/с, направленная вправо; возмущающая сила приложена к телу 1 и направлена вправо, P_0 = 100 H.

ВАРИАНТ 11

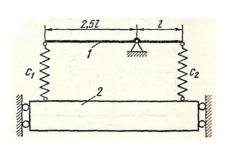
Система состоит из трех тел –двух упругозакрепленных брусков 1, 2 с массами m_1 и m_2 и цилиндра 3 с массой m_3 . В положении равновесия пружины не деформированы. Проскальзывания между цилиндром и брусками нет.

Дано: R=0,4 м, a=0,2 м, $m_1=2$ кг, $m_2=3$ кг, $m_3=8$ кг , $c_1=20\cdot10^2$ H/м, $c_2=40\cdot10^2$ H/м, $c_3=30\cdot10^2$ H/м.

Начальные условия: телу 1 сообщается скорость 20 м/с, направленная вправо; возмущающая сила приложена к телу 1 и направлена вправо P_0 = 20 H.

ВАРИАНТ 12

Система состоит из двух тел –упругозакрепленного тела 2, находящегося в особых вертикальных направляющих



статические удлинения $\lambda_{\text{ст}}$ і, стержень 1 — получит угловое статическое перемещение.

Дано: $\ell = 0.5$ м, $m_1 = 8$ кг, $m_2 = 10$ кг, $c_1 = 40 \cdot 10^3$ H/м, $c_2 = 60 \cdot 10^3$ H/м.

Начальные условия: стержню 1 сообщается - угловая скорость 4 c^{-1} , направленная по ч.с.; возмущающий момент приложен к стержню 1, M_0 = 20

и однородного стержня 1 длиной $3,5\ell$, способного вращаться в вертикальной плоскости относительно оси шарнира. В положении равновесия обе пружины оказываются деформированы, т.е. получат

Нм.

ВАРИАНТ 13

Система состоит из четырех тел –двух упругозакрепленных одинаковых дисков радиуса R и массой m₃,

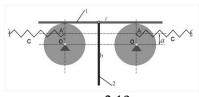


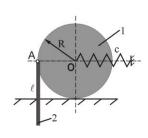
рис. 2.13

горизонтальной балки 1, однородного стержня 2 длиной b, способного вращаться в вертикальной плоскости относительно оси шарнира, жестко связанного с балкой 1. В положении равновесия стержень 2 вертикален и пружины не деформированы. Проскальзывания между дисками и балкой нет.

Дано: R = 0,5 м, a=0,2 м, b=2 м, m_1 = 15 кг, m_2 = 10 кг, m_3 = 20 кг , c =6·10² H/м.

Hачальные условия: телу 1 сообщается скорость 10 м/с, направленная вправо; возмущающая сила приложена к телу 1 и направлена вправо, P_0 = 100 H.

ВАРИАНТ 14



Система состоит из двух тел —диска 1 и однородного стержня 2 длиной ℓ , способного вращаться в вертикальной плоскости относительно оси шарнира А. В положении равновесия стержень 2 вертикален и обе пружина не деформирована.

Дано: $\ell = 0.6$ м, R = 0.5 м, $m_1 = 4$ кг, $m_2 = 1$ кг, $c = 4.10^3$ Н/м.

Начальные условия: телу 1 сообщается скорость 4м/с, направленная влево; возмущающая сила приложена к телу 1 и направлена вправо, P_0 = 100 H.

рис. 2.14

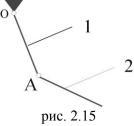
ВАРИАНТ 15

Система — двойной физический маятник состоит из двух однородных стержней 1 и 2, расположенных в вертикальной плоскости. Длины стержней ℓ_1 и, ℓ_2 ; каждый способен вращаться

относительно горизонтальных оси в точках О и А соответственно.

Дано:
$$\ell_1 = 1$$
 м, $\ell_2 = 2$ м, $m_1 = 4$ кг, $m_2 = 8$ кг,

Начальные условия: стержню 1 сообщается скорость 10 м/с, направленная влево; возмущающая сила приложена к телу 1 и направлена вправо, P_0 = 100 H.



ВАРИАНТ 16

Система состоит из трех тел –конических шестеренок 1 и 2 и диска 3. Одним из концов оси шестеренки 1 и диска 3 жестко закреплены. Жесткости на кручение осей тел 1, 2 и 3 - c_1 , c_2 , c_3 . Массой осей пренебрегаем. В положении равновесия пружины- оси не деформированы. Оси х-х и у-у взаимно перпендикулярны; i_2 i_1 — радиусы инерции шестеренок 2 и 1.

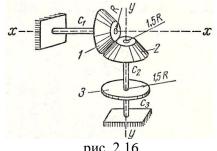


рис. 2.16

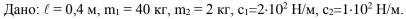
Дано: R = 0.4 м, $m_1 = 30$ кг, $m_2 = 40$ кг,

 $m_3 = 20$ кг, $c_1 = 1 \cdot 10^4$ Hм, $c_2 = 0.5 \cdot 10^4$ Hм, $c_3 = 2 \cdot 10^4$ Hм, $i_2 = i_1 = 0.5$ м.

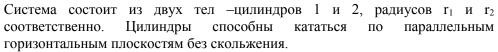
Начальные условия: колесу 3 сообщается угловая скорость 20 1/с, направленная против ч.с.; возмущающий момент приложен к колесу 1, М₀= 10 Нм.

ВАРИАНТ 17

Система состоит из двух тел: рамки 1 из трех одинаковых однородных стержней, жестко соединенных в точках О, А, В, способной вращаться в вертикальной плоскости относительно горизонтальной оси шарнира в точке О и исходно вертикального однородного стержня 2, способного вращаться в вертикальной плоскости относительно горизонтальной оси шарнира в точке С. Пружины деформируются только вдоль своей оси. В положении равновесия пружины не деформированы.



Начальные условия: стержню 1 сообщается угловая скорость 1 c^{-1} , направленная против ч.с.; возмущающий момент приложен к телу 1, M_0 = 20 Hм.



Дано: $r_1 = 0.5$ м, $r_2 = 0.3$ м, $m_1 = 6$ кг, $m_2 = 4$ кг, $c_1 = 2 \cdot 10^3$ H/м, $c_2 = 1 \cdot 10^3$ H/м, $c_3 = 3.10^3 \text{ H/m}.$

Начальные условия: телу 1 сообщается скорость 10 м/с, направленная влево; возмущающая сила приложена к телу 1 и направлена вправо, $P_0 = 100 \text{ H}$.

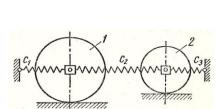


рис. 2.17

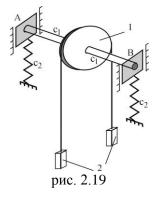
рис. 2.18

ВАРИАНТ 19

Система состоит из шкива 1 (сплошного однородного диска радиуса r), закрепленного на валу с крутильной жесткостью с1 и двух грузов 2, подвешенных к концам троса, переброшенного через шкив. Вал заделан концами А и В в вертикальные направляющие. Направляющие крепятся к вертикальным пружинам жесткости с2. В положении равновесия вертикальные пружины деформированы (т.е. получат статические удлинения λ_{cr}), валы – нет.

Дано: r = 0.4 м, $m_1 = 80$ кг, $m_2 = 20$ кг, $c_1 = 3.10^4$ Hм, $c_2 = 6.10^5$ H/м.

Начальные условия: шкиву 1 сообщается угловая скорость 20 1/с, направленная против ч.с.; возмущающий момент приложен к шкиву 1, M_0 = 20 Hм.

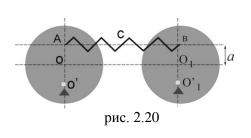


ВАРИАНТ 20

Система состоит из двух упругосвязанных однородных цилиндров радиуса г и массы т, способных вращаться относительно горизонтальных осей, проходящих через точки О' и О' соответственно. Точки O' и O'_1 смещены по вертикали относительно O и O_1 на r/2.

Дано: r = 0.5 м, a=0.2 м, $m_1 = 15$ кг, $c = 6.10^2$ H/м.

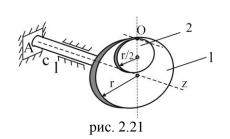
Начальные условия: правому цилиндру сообщается скорость 10 м/с, направленная вправо; возмущающая сила приложена к правому цилиндру и направлена вправо, $P_0 = 100 \text{ H}$.



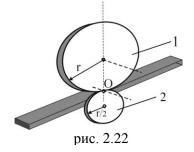
ВАРИАНТ 21

Система состоит из двух дисков 1 и 2, первый (радиуса г) из которых закреплен на упругом валу с крутильной жесткостью c, а другой (радиуса $r_{/2}$) может вращаться относительно горизонтальной оси, параллельной оси вала и проходящей через точку О на ободе первого диска.

Дано: r = 0.4 м, $m_1 = 80$ кг, $m_2 = 40$ кг, $c_1 = 3.10^4$ Нм.



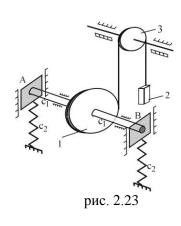
Начальные условия: диску 2 сообщается угловая скорость 20 1/c, направленная против ч.с.; возмущающий момент приложен к диску 1, M_0 = 20 Hм.



ВАРИАНТ 22

Система состоит из двух дисков 1 и 2. Первый может кататься по горизонтальной плоскости, а другой может вращаться относительно горизонтальной оси, проходящей через точку O на ободе первого диска. Дано: r = 0.4 м, $m_1 = 100$ кг, $m_2 = 50$ кг.

Начальные условия: диску 2 сообщается угловая скорость 10 1/c, направленная против ч.с.; возмущающая сила приложена к диску1 и направлена вправо, $P_0 = 80 \text{ H}$.



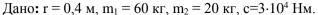
ВАРИАНТ 23

Система состоит из шкивов 1 и 3 (сплошных однородных дисков) и груза 2. Шкив 1 закреплен на валу с крутильной жесткостью c_1 . Вал заделан концами A и B в вертикальные направляющие. Направляющие крепятся к вертикальным пружинам жесткости c_2 . Ось шкива 3 абсолютно жесткая. В положении равновесия вертикальные пружины и вал деформированы (т.е. получат статические удлинения $\lambda_{\text{ст}\,i}$).

Дано: r = 0.4 м, $m_1 = 80$ кг, $m_2 = 20$ кг, $m_3 = 40$ кг, $c_1 = 3 \cdot 10^4$ Нм, $c_2 = 6 \cdot 10^5$ Н/м. Начальные условия: шкиву 1 сообщается угловая скорость 10 1/с, направленная против ч.с.; возмущающий момент приложен к шкиву 1, $M_0 = 10$ Нм.

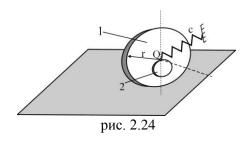
ВАРИАНТ 24

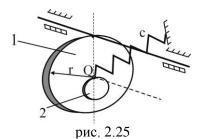
Система состоит из двух, находящихся в вертикальной плоскости, дисков 1 и 2. Первый может кататься по горизонтальной плоскости, а другой может вращаться относительно горизонтальной оси, проходящей через точку O — центр первого диска. Радиус диска 2 равен $\frac{1}{4}r$. Точка O соединена с горизонтальной, расположенной в плоскости дисков, пружиной.



Начальные условия: диску 2 сообщается угловая скорость 4 1/с, направленная против ч.с.;

возмущающий момент приложен к диску 1, $M_0 = 20$ Hм.





ВАРИАНТ 25

Система состоит из двух, находящихся в вертикальной плоскости, дисков 1 и 2. Первый может вращаться вокруг горизонтальной оси, а другой- относительно горизонтальной оси, проходящей через точку O- центр первого диска. Ось диска 1 абсолютно жесткая. Радиус диска 2 равен $\frac{1}{4}r$. Точка O соединена с горизонтальной, расположенной в плоскости дисков, пружиной.

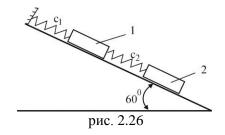
Дано: r = 0.4 м, $m_1 = 50$ кг, $m_2 = 10$ кг, $c = 5.10^4$ Нм.

Начальные условия: диску 2 сообщается угловая скорость 4 1/c, направленная против ч.с.; возмущающая сила приложена к диску 1 и направлена вправо, $P_0 = 50 \text{ H}$.

ВАРИАНТ 26

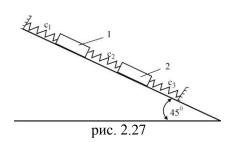
Система состоит из двух упругозакрепленных тел, находящихся на гладкой наклонной плоскости. В положении равновесия все пружины деформированы.

Дано: $m_1 = 8$ кг, $m_2 = 2$ кг, $c_1 = 2 \cdot 10^3$ H/м, $c_2 = 1.5 \cdot 10^3$ H/м.



Начальные условия: телу 1 сообщается скорость 2м/с, направленная вниз вдоль наклонной плоскости; возмущающая сила приложена к телу 1 и направлена вниз вдоль наклонной плоскости, P_0 = 50 H.

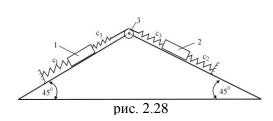
ВАРИАНТ 27



Система состоит из двух упругозакрепленных тел, находящихся на гладкой наклонной плоскости. В положении равновесия все пружины деформированы.

Дано: $m_1 = 12 \text{ кг, } m_2 = 8 \text{ кг, } c_1 = 2 \cdot 10^3 \text{ H/m, } c_2 = 1,5 \cdot 10^3 \text{ H/m, } c_3 = 4 \cdot 10^3 \text{ H/m.}$ Начальные условия: телу 1 сообщается скорость 2m/c, вниз вдоль наклонной плоскости; возмущающая сила приложена к телу 1 и направлена вниз вдоль наклонной плоскости, $P_0 = 100 \text{ H.}$

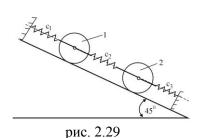
ВАРИАНТ 28



Система состоит из двух упругозакрепленных тел, находящихся на гладкой наклонной плоскости. В положении равновесия все пружины деформированы.

Дано: $m_1 = 10$ кг, $m_2 = 6$ кг, $c_1 = 2 \cdot 10^3$ H/м, $c_2 = 1,5 \cdot 10^3$ H/м, $c_3 = 1 \cdot 10^3$ H/м. Начальные условия: телу 1 сообщается скорость 2м/с, вниз вдоль наклонной плоскости; возмущающая сила приложена к телу 2 и направлена вниз вдоль наклонной плоскости, $P_0 = 100$ H.

ВАРИАНТ 29

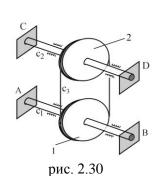


Система состоит из двух упругозакрепленных тел — цилиндров 1 и 2, находящихся наклонной плоскости. В положении равновесия все пружины деформированы.

Дано: $m_1 = 12$ кг, $m_2 = 18$ кг, $c_1 = 4 \cdot 10^4$ H/м, $c_2 = 2.5 \cdot 10^4$ H/м, $c_3 = 5 \cdot 10^4$ H/м.

Начальные условия: телу 1 сообщается скорость 2 м/с, вниз вдоль наклонной плоскости; возмущающая сила приложена к телу 2 и направлена вниз вдоль наклонной плоскости, P_0 = 100 H.

ВАРИАНТ 30



Система состоит из двух тел —шкивов 1 и 2 (i_1 i_2 — радиусы инерции шкивов), насаженных на упругие валы. На концах A и B вал жестко закреплен. Жесткости на кручение валов - c_1 , c_2 , c_3 . Массой валов пренебрегаем. Шкивы связаны ремнем с жесткостью на растяжение c_3 . В положении равновесия валы и ремень не деформированы.

Дано: $m_1 = 50$ кг, $m_2 = 60$ кг, $c_1 = 2 \cdot 10^5$ Hм, $c_2 = 3 \cdot 10^5$ Hм, $c_3 = 1 \cdot 10^4$ H/м, $i_2 = i_1 = 0.5$ м. Начальные условия: шкиву 1 сообщается угловая скорость 15 1/с, направленная против ч.с.; возмущающий момент приложен к шкиву 1, $M_0 = 50$ Нм.

Библиографический список

- 1. Сборник задач для курсовых работ по теоретической механике. Яблонский А.А. и др.; М.: Высш. шк., 1985.
- 2. *Горшков Л.К.* Основы теории механических колебаний в разведочном бурении: Учебное пособие. СПб.: СПГГИ, 1998. -109 с.
- 3. Теория механических колебаний с примерами из практики горного дела. / Р.Ф. Нагаев, Р.И. Шкадов, Н.А. Лебедев и др. СПб.: СПГГИ, 1993. –88 с.
- 4. Горшков Л.К., Яковлев А.А. Теория колебаний: Методические указания к РГР.- СПб.:СПГГИ, 2005.