Министерство образования и науки Российской Федерации

Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования

САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО-СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ

Н.А. МАСЛЕННИКОВ

СТРОИТЕЛЬНАЯ МЕХАНИКА Ч. 1

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ ДЛЯ ВЫПОЛНЕНИЯ КОНТРОЛЬНЫХ РАБОТ

Для студентов ФБФО специальностей СЗуст, С2013ув, СЗувт

> 2017 Санкт-Петербург

СОДЕРЖАНИЕ РАСЧЁТНО-ГРАФИЧЕСКИХ РАБОТ

- **РГР. №1**. Расчёт статически определимых систем на статическую нагрузку.
- Задача №1.1 Построение эпюр поперечных сил и изгибающих моментов в шарнирной балке.
- Задача № 1.2. Построение эпюр изгибающих моментов, продольных и поперечных сил в раме.
- Задача № 1.3. Определение усилий в заданных стержнях фермы.
- **РГР. № 2**. Расчёт статически определимых систем на подвижную нагрузку.
- Задача № 2.1. Построение линий влияния в шарнирной балке.
- Задача № 2.2. Построение линий влияния в ферме.
- РГР. № 3. Расчёт статически неопределимой рамы методом сил.

Приложения

Рекомендуемая литература

ПОРЯДОК ПОЛУЧЕНИЯ ИНДИВИДУАЛЬНОГО ЗАДАНИЯ

Исходные данные для выполнения каждой работы студент выписывает из приведённых в каждом задании таблиц и схем в соответствии со своим шифром. Шифром являются три последних цифры номера зачётной книжки или студенческого билета. Например, номер зачётной книжки 18549: первая цифра шифра — 5, вторая — 4, третья — 9.

ОБЩИЕ ТРЕБОВАНИЯ К ОФОРМЛЕНИЮ РАСЧЁТНО-ГРАФИЧЕСКИХ РАБОТ

Расчётно-графическая работа выполняется на стандартных листах писчей бумаги (формат A-4). Заполняется только одна сторона листа. (см. приложение 1, стр.32).

На титульном листе указываются номер и название работы, фамилия, имя и отчество студента, номера группы и специальности, индивидуальный номер шифра. Работа должна быть сброшюрована.

Расчётная схема изображается в масштабе длин. На ней указываются все необходимые данные в численном виде (размеры, нагрузки и др.), которые выписываются из таблиц. Все расчёты приводятся в краткой форме. Небрежно выполненные и выполненные не по шифру работы к проверке не принимаются.

РАСЧЁТНО-ГРАФИЧЕСКАЯ РАБОТА №1

РАСЧЁТ СТАТИЧЕСКИ ОПРЕДЕЛИМЫХ СИСТЕМ НА СТАТИЧЕСКУЮ НАГРУЗКУ

Задача № 1.1. Построение эпюр поперечных сил и изгибающих моментов в шарнирной балке

Задание: Построить эпюры поперечных сил и изгибающих моментов в шарнирной балке. Исходные данные определяются из таблицы 1.1 и схемам, представленным на рис. 1.1.

Таблица 1.1

Пер- вая цифра шифра	<i>F</i> ₁ кН	<i>F</i> ₂ кН	$egin{array}{c} l_1 \ \mathbf{M} \end{array}$	а м	Вто- рая цифра шифра	<i>q</i> кН/м	$egin{array}{c} l_2 \ \mathbf{M} \end{array}$	<i>в</i> М	Опора (для РГР.2)	Сечение (для РГР.2)	Третья цифра шифра №схемы	<i>l</i> ₃ M	<i>с</i> м
0	2	5	6	2	0	4	10	2	A	K	0	12	3
1	5	2	12	2	1	2	12	3	B	L	1	16	2
2	2	4	8	3	2	3	14	3	A	K	2	14	4
3	6	2	9	3	3	6	15	4	B	L	3	10	3
4	5	4	10	4	4	5	10	2	A	K	4	12	2
5	3	5	6	2	5	3	12	3	B	L	5	14	4
6	2	4	10	2	6	4	15	3	A	K	6	12	3
7	5	3	8	3	7	5	14	2	В	L	7	14	2
8	2	6	9	3	8	2	12	2	A	K	8	12	2
9	3	5	10	4	9	6	16	4	В	L	9	15	3

Последовательность расчёта

- 1. Изобразить в масштабе схему балки. Указать размеры и нагрузки.
- 2. Построить схему взаимодействия элементов системы.
- 3. Произвести анализ геометрической неизменяемости системы.
- $Ш = C_{\text{on.}} 3$, где Ш-количество шарниров, $C_{\text{on.}}$ количество опорных стержней. Выполнить анализ структуры взаимодействия отдельных дисков.
- 4. Определить опорные реакции для каждого диска, составляя уравнения равновесия. Рассматривать диски сверху вниз.
- 5. Произвести проверку правильности определения опорных реакций, составив уравнения равновесия для всей системы.

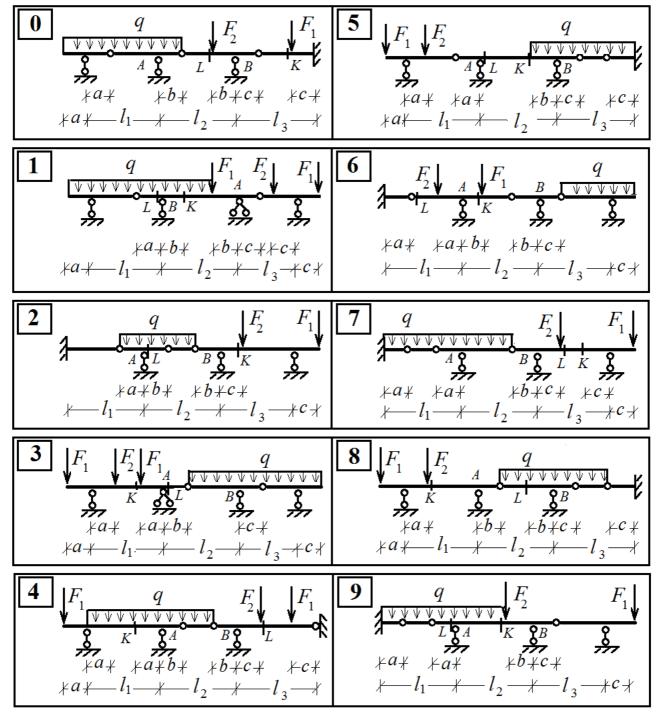
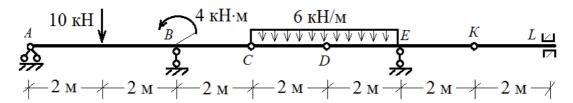
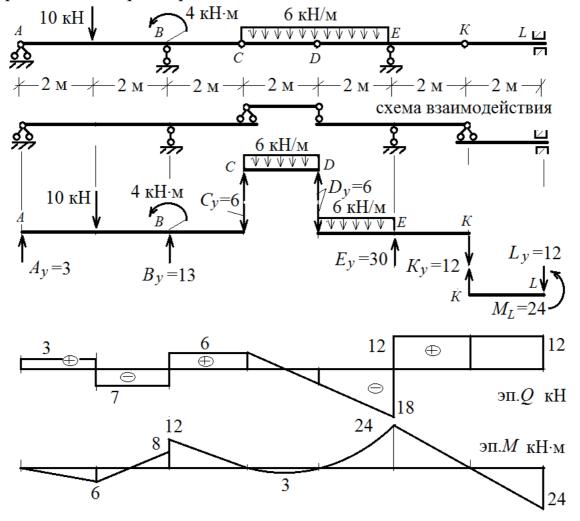



Рис.1.1. Схемы заданий к задачам: № 1.1. РГР № 1 и № 2.1. РГР №2

- 6. Показать схему взаимодействия отдельных дисков с найденными реакциями на схеме каждого диска.
- 7. Для каждого диска построить эпюры поперечных сил и изгибающих моментов и объединить их для всей расчётной схемы.
- 8. Выполнить проверку правильности построения эпюр на всех участках, используя дифференциальные зависимости:

$$Q = dM/dx$$
 и $q = -dQ/dx$.


Пример решения задачи № **1.1.** Построить эпюры изгибающих моментов и поперечных сил.

• Строим схему взаимодействия шарнирной балки. Производим анализ геометрической структуры: $\mathbf{H} = \mathbf{C}_{\text{оп.}} - 3 = 6 - 3 = 3$. Количество шарниров достаточно для геометрической неизменяемости и статической определимости системы.

Кинематический анализ: Все диски имеют общую горизонтальную связь. Диски KL и AB — главные, на них опираются последовательно все остальные диски. Все диски соединены с основанием при помощи трёх стержней, не параллельных и не пересекающихся в одной точке. Вывод: вся система — диск.

• Определяем опорные реакции для каждого диска отдельно.

Расчёт начинаем сверху: Диск *CD*: $C_y = D_y = 6.2/2 = 6$ кH.

Диск
$$AB$$
: $\sum M_A = 0$; $6 \cdot 6 - 4 + 10 \cdot 2 - B_y \cdot 4 = 0$; $B_{yB} = 13$ кH, $\sum M_B = 0$; $6 \cdot 2 - 4 - 10 \cdot 2 + A_y \cdot 4 = 0$; $A_y = 3$ кH, Проверка: $\sum Y = 3 + 13 - 10 - 6 = 0$.

Диск
$$EK$$
: $\sum M_E = 0$; $-6 \cdot 2 - 6 \cdot 2 \cdot 1 + K_y \cdot 2 = 0$; $K_y = 12$ кH, $\sum M_K = 0$; $-6 \cdot 4 - 6 \cdot 2 \cdot 3 + E_y \cdot 2 = 0$: $E_y = 30$ кH, Проверка: $\sum Y = 30 - 12 - 6 - 6 \cdot 2 = 0$.

Диск KL: $\Sigma Y = 0$; $L_y = 12$ кH, $\Sigma M_L = 0$; $12 \cdot 2 - M_L = 0$; $M_L = 24$ кH·м. Проверка всей системы: $\Sigma Y = 3 + 13 + 30 - 12 - 10 - 6 \cdot 4 = 0$.

- Для каждого диска строим эпюры поперечных сил и изгибающих моментов и объединяем их для всей расчётной схемы.
- Проверяем правильность построения эпюр по дифференциальным зависимостям: Q = dM/dx, $Q = Q^6 (M^{\text{пр.}} + M^{\text{лев.}})/l$

Участок
$$AB$$
: $Q^{\text{лев}} = +6/2 = +3 \text{ кH}$; $Q^{\text{пр}} = -(6+8)/2 = -7 \text{ кH}$;

Участок
$$BC: Q = 12/2 = 6$$
 кH;

Участок *CDE*:
$$Q^{\text{пев}} = 6.4/2 - (0+24)/4 = 6 \text{ кH};$$

 $Q^{\text{пр}} = -6.4/2 - (0+24)/4 = -18 \text{ кH};$

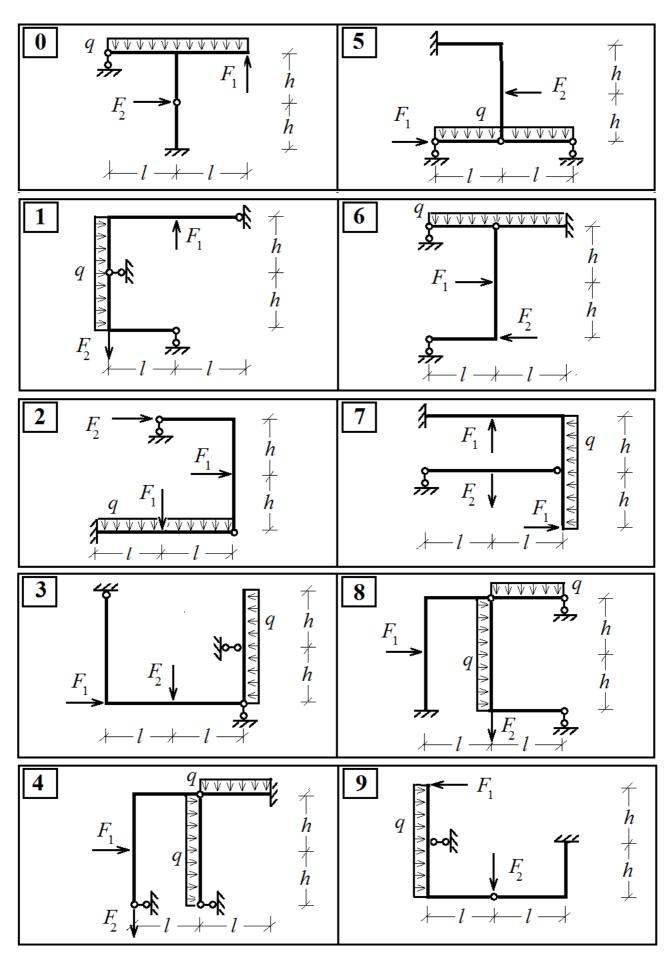
Участок *EKL*: Q = (24 + 24)/4 = 12 кH.

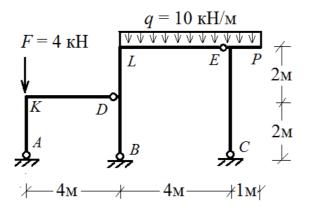
Задача № 1.2. Построение эпюр изгибающих моментов, продольных и поперечных сил в раме

Задание: Построить эпюры изгибающих моментов, продольных и поперечных сил в раме. Исходные данные определяются из таблицы 1.2 и схемам, представленным на рис.1.2.

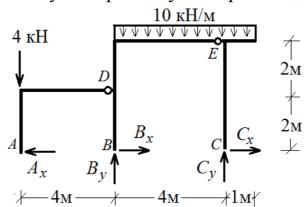
Таблица 1.2

Первая цифра шифра	<i>F</i> ₁ кН	<i>F</i> ₂ кН	Вторая цифра шифра	<i>q</i> кН/м	Третья цифра шифра (№ схемы)	h M	l M
0	2	0	0	3	0	2	4
1	0	5	1	5	1	3	2
2	3	0	2	2	2	4	3
3	0	6	3	6	3	5	2
4	4	0	4	4	4	4	5
5	0	4	5	3	5	2	4
6	5	0	6	5	6	3	2
7	0	2	7	4	7	5	3
8	6	0	8	6	8	2	5
9	0	3	9	2	9	4	2




Рис. 1.2. Схемы заданий к задаче: № 1.2. РГР № 1

Последовательность расчёта


- 1. Изобразить в масштабе расчётную схему с указанием размеров и нагрузки.
- 2. Определить степень свободы расчётной схемы по формуле:
- W = 3 К Ш , где К количество замкнутых контуров, Ш количество простых шарниров. Произвести анализ геометрической структуры (кинематический анализ) расчётной схемы.
- 3. Определить опорные реакции из уравнений равновесия.
- 4. Построить эпюры N, Q и M для всей системы.
- 5. Произвести проверку правильности построения эпюр, рассмотрев равновесие узлов.
- 6. Произвести проверку правильности построения эпюр на всех участках, используя дифференциальные зависимости:

$$Q = dM/dx$$
 и $q = -dQ/dx$.

Пример решения задачи № **1.2.** Построить эпюры N, Q и M в раме.

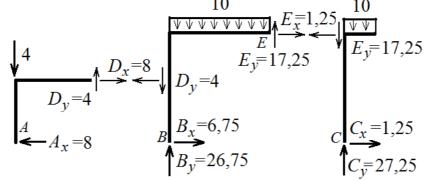
• $W = 3Д - 2Ш - C_{\text{оп}} = 3.3 - 2.2 - 5 = 0$; Диски *BLE* и *EC* соединены между собой и с основанием при помощи трёх шарниров, не лежащих на одной прямой. Следовательно, *BLEC* – диск. К нему присоединён диск *AD* (диада) по тому же признаку. Вся рама – диск.

• Освобождаем раму от связей и определяем опорные реакции.

Затем делаем сечение в местах установки шарниров и определяем усилия в шарнирах.

$$\sum M_{D}^{\text{пев.}} = 0; -4.4 + A_{x} \cdot 2 = 0; A_{x} = 8 \text{ кH};$$

$$\sum M_{B} = 0; -4.4 + 10.5 \cdot 2.5 - C_{y} \cdot 4 = 0; C_{y} = 27.25 \text{ кH};$$

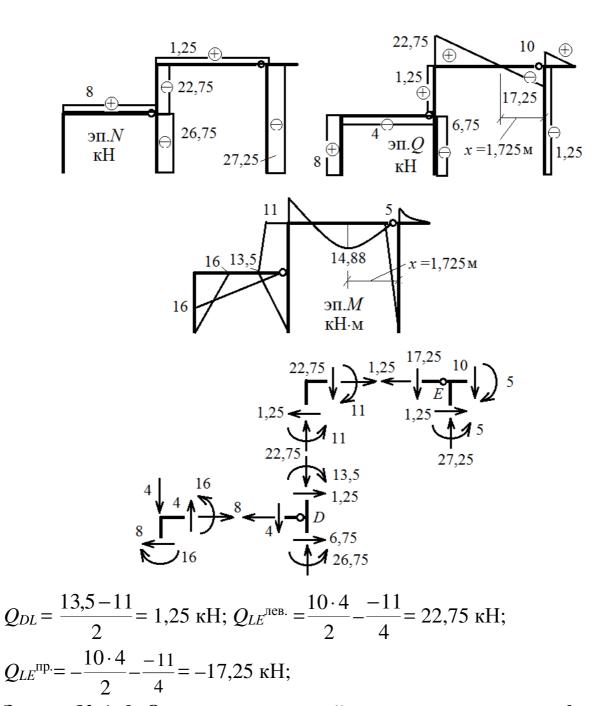

$$\sum M_{C} = 0; -4.8 - 10.5 \cdot 1.5 + B_{y} \cdot 4 = 0; B_{y} = 26.75 \text{ kH};$$

$$\sum M_{E}^{\text{Hu3.}} = 0; 10.1 \cdot 0.5 - C_{x} \cdot 4 = 0; C_{x} = 1.25 \text{ kH};$$

$$\sum M_{E^{\text{TeB.}}} = 0; -4.8 + A_{x}.4 + B_{y}.4 - 10.4.2 - B_{x}.4 = 0;$$

$$-4.8 + 8.4 + 26,75.4 - 10.4.2 - B_x.4 = 0; B_x = 6,75 \text{ kH};$$

Проверка:
$$\sum X = 1,25 + 6,75 - 8 = 0$$
; $\sum Y = 27,25 + 26,75 - 4 - 10 \cdot 5 = 0$;


Диск
$$AD$$
: $\sum X = 0$; $D_x - A_x = 0$; $D_x = 8$ кH; $\sum Y = 0$; $D_y - 4 = 0$; $D_y = 4$ кH; $\sum M_D = 0$; $-4\cdot 4 + A_x\cdot 2 = 0$; $A_x = 8$ кH (проверка);

Диск
$$EC$$
: $\sum X = 0$; $C_x - E_x = 0$; $E_x = 1,25$ кH; $\sum Y = 0$; $C_y - 10 \cdot 1 - E_y = 0$; $E_y = 27,25 - 10 = 17,25$ кH; $\sum M_E = 0$; $10 \cdot 1 \cdot 0,5 - C_x \cdot 4 = 0$; $C_x = 1,25$ кH (проверка);

Проверка: Диск BE: $\sum X = 0$; 6,75+1,25 - 8 = 0; $\sum Y = 0$; 26,75+17,75 - 4 -10·4 = 0;

- Строим эпюры *N*, *Q* и *M*:
- Определяем M_{ex} на эпюре M: $Q_x = -17,25 + 10 \cdot x = 0$; x = 1,725 м. $M_{ex} = \sum M_i = 17,25 \cdot 1,725 10 \cdot 1,725 \cdot (1,725/2) = 14,88$ кН·м (растянуты нижние волокна).
- Рассмотрим равновесие узлов.
- Проверяем правильность построения эпюр по дифференциальным

зависимостям
$$Q = \frac{dM}{dx}$$
, $Q = Q^6 - \frac{M_{\text{пр}} + M_{\text{лев}}}{\ell}$: $Q_{AK} = \frac{16}{2} = 8 \text{ кH}$; $Q_{DK} = -\frac{16}{4} = -4 \text{ кH}$; $Q_{BD} = -\frac{13.5}{2} = -6.75 \text{ кH}$; $Q_{CE} = -\frac{5}{4} = -1.25 \text{ кH}$;

Задача № 1. 3. Определение усилий в заданных стержнях фермы

Задание: Способом сечений, а при необходимости способом вырезания узлов, определить усилия в стержнях заданной панели, а также в стойках слева и справа от этой панели. Исходные данные к задаче определить по таблице №1.3 и схемам, представленным на рис.1.3.

Последовательность расчёта

- 1. Изобразить в масштабе длин расчётную схему фермы с указанием размеров и нагрузки.
- 2. Определить опорные реакции.
- 3. Отметить «нулевые стержни».
- 4. Определить усилия в заданных стержнях фермы.

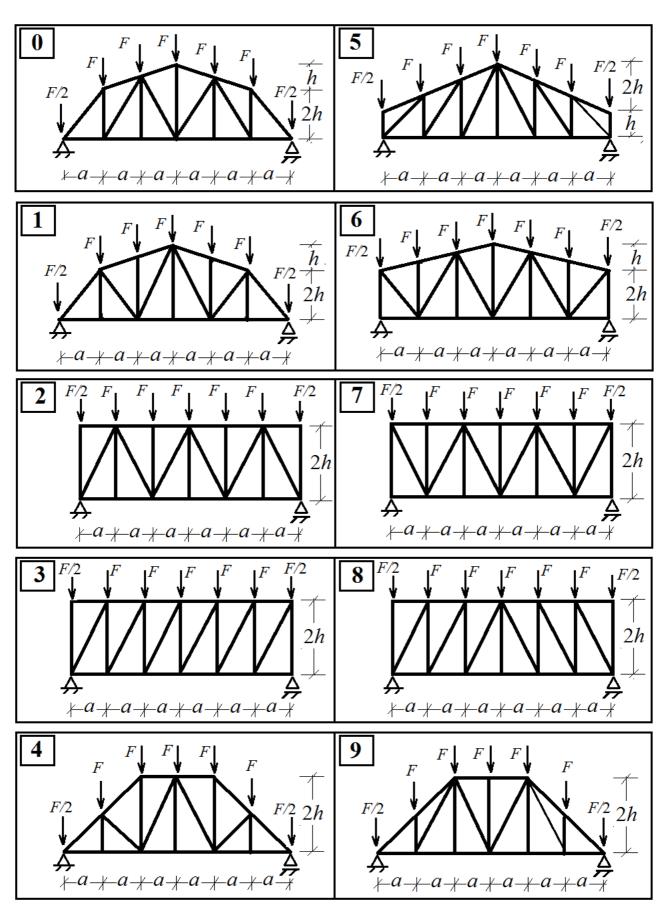
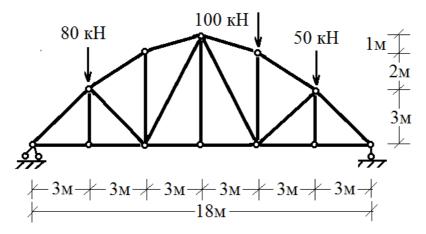
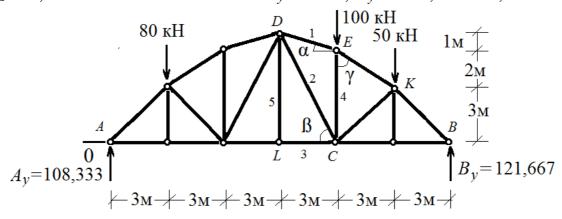



Рис. 1.3. Схемы заданий к задаче: № 1.3. РГР № 1

Таблица 1.3.


Первая	F_1	$N_{\underline{0}}$	Вторая	а	Третья цифра	h
цифра шифра	кН	панели	цифра шифра	M	шифра (№ схемы)	M
0	20	5	0	4	0	4
1	30	3	1	5	1	6
2	40	4	2	6	2	4
3	50	5	3	4	3	4
4	60	4	4	5	4	5
5	70	3	5	6	5	3
6	80	4	6	4	6	3
7	100	5	7	5	7	2
8	40	3	8	6	8	4
9	50	4	9	4	9	3

Пример решения задачи № **1.3.** Определить усилия в стержнях четвёртой панели фермы, а также в правой и левой стойках (в стержнях №№ 1-5).

• Определяем опорные реакции.

$$\sum M_A = 0$$
; $80.3 + 100.12 + 50.15 - B_y.18 = 0$; $B_y = 121,667$ kH; $\sum M_B = 0$; $-80.18 - 100.6 - 50.3 + A_y.18 = 0$; $A_y = 108,333$ kH;

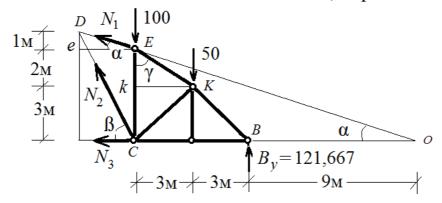
Проверка: $\Sigma Y = 108,333 + 121,667 - 80 - 100 - 50 = 0$.

- Выявляем «нулевые стержни». $N_5 = 0$ (по признаку).
- Определяем необходимые тригонометрические величины:

Из треугольника DEe': $DE = \sqrt{3^2 + 1^2} = 3{,}162;$

 $\cos\alpha = 3/3,162 = 0,949; \sin\alpha = 1/3,162 = 0,316;$

Из треугольника *DLC*: $DC = \sqrt{3^2 + 6^2} = 6,708$;


 $\cos\beta = 3/6,708 = 0,447; \sin\beta = 6/6,708 = 0,894;$

Из треугольника $KE\kappa$ ': $KE = \sqrt{3^2 + 2^2} = 3,606$;

 $\cos \gamma = 2/3,606 = 0,555; \sin \gamma = 3/3,606 = 0,832; \cos 45^0 = \sin 45^0 = 0,707;$

• Разрезаем ферму по заданной панели. Определяем усилия в стержнях: $\sum M_C^{\text{прав.}} = 0; -N_1 \cos \alpha \cdot 5 + 50 \cdot 3 - 121,667 \cdot 6 = 0;$

 $-N_1\cdot 0.949\cdot 5 + 150 - 730 = 0; N_1 = -122,234$ кН (стержень сжат);

 $\sum M_O$ прав. = 0; N_2 ·sinß·15 –100·15 – 50·12 + 121,667·9 = 0; N_2 · 0,894·15 – -1500 – 600 + 1095 = 0; N_2 = 74,944 кH (стержень растянут);

 $\sum M_D$ прав. = 0; $N_3 \cdot 6 + 100 \cdot 3 + 50 \cdot 6 - 121,667 \cdot 9 = 0$;

 $N_3 = 82,5$ кН (стержень растянут); α β γ

Проверка:

 $\Sigma X = N_1 \cos \alpha + N_2 \cos \beta + N_3 = 122,234.0,949 + 74,944.0,447 + 82,5 = 0.$

• Вырезаем узел *E*:

$$N_1 = -122,234 \text{ kH}$$
 $N_1 = -122,234 \text{ kH}$
 N_4
 N_6

$$\sum X = 0$$
; $N_1 \cdot \cos \alpha + N_6 \cdot \sin \gamma = 0$; $122,234 \cdot 0,949 + N_6 \cdot 0,832 = 0$; $N_6 = -139,423$ кН (стержень сжат);

$$\Sigma Y = 0$$
; $-100 - 122,234 \cdot \sin \alpha - N_6 \cdot \cos \gamma - N_4 = 0$; $-100 - 122,234 \cdot 0,316 - (-139,423) \cdot 0,555 - N_4 = 0$; $N_4 = -61,246$ кН (стержень сжат).

РАСЧЁТНО-ГРАФИЧЕСКАЯ РАБОТА №2

РАСЧЁТ СТАТИЧЕСКИ ОПРЕДЕЛИМЫХ СИСТЕМ НА ПОДВИЖНУЮ НАГРУЗКУ

Задача № 2.1. Построение линий влияния в шарнирной балке

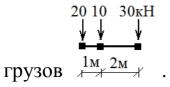
Задание: Построить линии влияния в шарнирной балке для заданной опорной реакции и усилий для заданного сечения. По линиям влияния определить величину этой опорной реакции и этих усилий от заданной нагрузки. Сравнить результаты с результатами, полученными аналитическим путём в задаче № 1.1. Определить по линиям влияния максимальные и минимальные значения опорной реакции и усилий в сече-

0,5m 1m

нии от заданной системы связанных подвижных грузов: $^{0.5\text{м}}$ 1м . Исходные данные определяются из таблицы 1.1 и схемам, представленным на рис.1.1. (см. РГР. № 1).

Последовательность расчёта

- 1. Изобразить в масштабе схему балки. Указать размеры и нагрузки, положение заданной опоры и сечения.
- 2. Построить схему взаимодействия элементов системы (поэтажную схему).
- 3. Построить линии влияния заданной опорной реакции, поперечной силы и изгибающего момента для заданного сечения.
- 4. По построенным линиям влияния определить величины этой опорной реакции, поперечной силы и изгибающего момента для заданного сечения от неподвижной нагрузки по формуле:

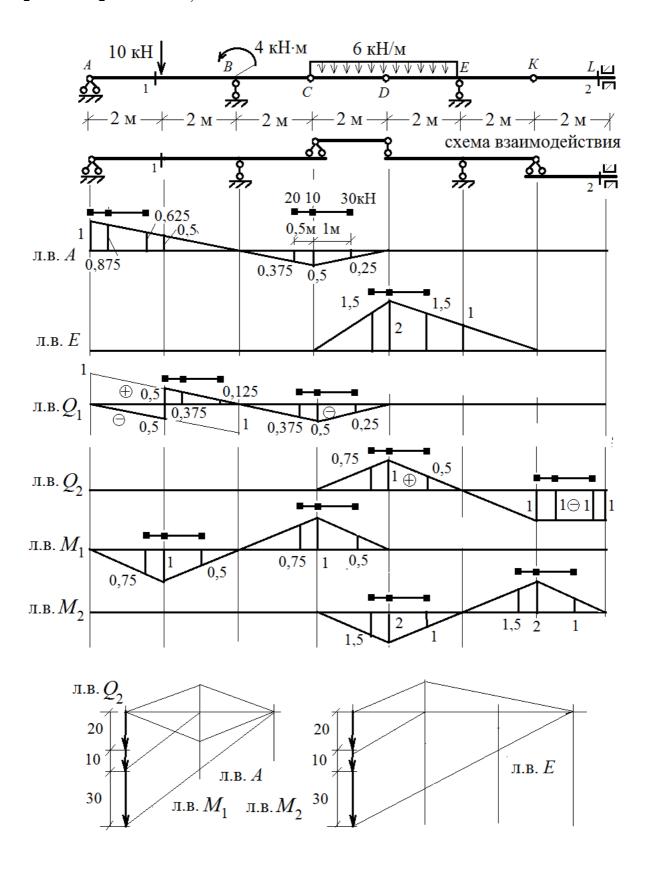

$$S = \sum F_i \cdot y_i + \sum q_i \cdot \omega_i$$
, $+ \sum M_i \cdot \text{tg } \varphi_i$

где y_i – ордината линии влияния под сечением, к которому приложена сила F_i , ω_i – площадь линии влияния под равномерной нагрузкой, φ_i – угол наклона линии влияния. Ординаты и площади линии влияния вводятся в формулу со своими знаками. Полученные значения сравнить с результатами задачи 1.1. в табличной форме.

5. Для системы связанных подвижных грузов определить по линиям влияния максимальные и минимальные значения опорной реакции, поперечной силы и изгибающего момента.

Определяе-	Значение определяемой	Значение определяемой	Погрешность
мая	величины при аналитиче-	величины по линии	к аналитическому
величина	ском расчёте, кН	влияния, кН	расчёту в %
A			
Q_{κ}			
M_{κ}			

Пример решения задачи № 2.1. Задание: Построить линии влияния для реакций опор A и E, линии влияния поперечных сил и изгибающих моментов в сечениях 1 и 2. Определить значения реакций в указанных опорах и усилия в указанных сечениях. Сравнить результаты с результатами, полученными в задаче №1.1. Определить по линиям влияния максимальные и минимальные значения опорных реакции, поперечных сил и изгибающих моментов от системы связанных подвижных


- Строим схему взаимодействия шарнирной балки.
- Строим линии влияния: A_y , E_y , Q_1 , Q_2 , M_1 , M_2 .
- Определяем значения:

$$A_y$$
 = 10·0,5 + 6(-0,5·0,5·2) - 4·tgφ₁ = 5 -3+1 = 3κH; (tgφ₁= -0.25);
 E_y = 6(0,5·2·2+1,5·2) = 30κH; Q_2 = 6·0,5·1·2·2 = 12κH;
 Q_1 = 10·0,5 -6·0,5·0,5·2 - 4·tgφ₂ = 5 - 3 +1= 3 κH; (tgφ₂= -0.25);
 M_1 = 10·1 - 4·tgφ₃ + 6·0,5·1·2 = -10 - 4·(-0,5) + 6 = 6κH·м;
(tgφ₃=-0.5); M_2 = 6·1/2·2·2·2 = 24 κH·м.

- Полученные значения сравниваем с результатами задачи 1.1. в табличной форме.
- Определяем по линиям влияния максимальные и минимальные значения опорных реакции, поперечных сил и изгибающих моментов от системы связанных подвижных грузов:

$$A_y^{\text{max}} = 0$$
; $A_y^{\text{min}} = 20 \cdot 1.5 + 30 \cdot 2 + 10 \cdot 1.5 = 105 \text{ kH}$; $E_y^{\text{max}} = 20 \cdot 1 + 30 \cdot 0.875 + 10 \cdot 0.625 = 52.5 \text{ kH}$; $E_y^{\text{min}} = -(20 \cdot 0.375 + 30 \cdot 0.5 + 10 \cdot 0.625) = -25 \text{ kH}$; $Q_1^{\text{max}} = 20 \cdot 0.5 + 30 \cdot 0.375 + 10 \cdot 0.125 = 22.5 \text{ kH}$; $Q_1^{\text{min}} = -(20 \cdot 0.375 + 30 \cdot 0.5 + 10 \cdot 0.625) = -25 \text{ kH}$; $Q_2^{\text{max}} = (20 + 30 + 10) \cdot 1 = 60 \text{ kH}$;

$$Q_2^{\text{min}} = -(20 \cdot 0.75 + 30 \cdot 1 + 10 \cdot 0.5) = -50 \text{ kH};$$
 $M_1^{\text{max}} = M_1^{\text{min}} = 20 \cdot 0.75 + 30 \cdot 1 + 10 \cdot 0.5 = 50 \text{ kH·m};$
 $M_2^{\text{min}} = M_2^{\text{min}} = 20 \cdot 1.5 + 30 \cdot 2 + 10 \cdot 1 = -100 \text{ kH·m}.$

Определяе-	Значение определяемой вели-	Значение определяемой	Погрешность
мая	чины при аналитичес-	величины по линии влия-	к аналитическо-
величина	ком расчёте, кН	ния, кН	му расчёту в %
A_y	3	3	0
E_{y}	30	30	0
Q_1	3	3	0
Q_2	12	12	0
M_1	6	6	0
M_2	24	24	0

Задача 2.2. Расчёт фермы на подвижную нагрузку.

Построение линий влияния усилий в стержнях фермы

Задание: Построить линии влияния для опорных реакций и для усилий в стержнях заданной панели фермы, а также в стойках справа и слева от указанной панели при езде поверху и понизу. Определить значения реакций в указанных опорах и усилия в указанных стержнях. Сравнить результаты с результатами, полученными в задаче 1.3.

Определить по линиям влияния максимальные и минимальные значения опорных реакций и продольных сил в заданных стержнях от задан-

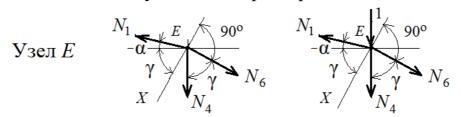
ной системы связанных подвижных грузов $\stackrel{1_{\rm M}}{\longleftarrow} \stackrel{2_{\rm M}}{\longrightarrow}$. Исходные данные определяются из таблицы 1.3 и схемам, представленным на рис.1.3 РГР №1, Задача 1.3 «Определение усилий в стержнях фермы».

Последовательность расчёта

- 1. Изобразить в масштабе схему фермы. Указать размеры и узловую нагрузку.
- 2. Построить линии влияния опорных реакций.
- 3. Построить линии влияния продольных сил для заданных стержней при езде поверху, затем при езде понизу.
- 4. По построенным линиям влияния определить величины опорных реакций и усилий в заданных стержнях от неподвижной нагрузки по формуле: $S = \sum F_i \cdot y_i$.

где y_i – ордината линии влияния под точкой приложена сила F_i . Ординаты линии влияния вводятся в формулу со своими знаками.

Полученные значения сравнить с результатами задачи 1.3 в табличной форме.


5. Определить по линиям влияния максимальные и минимальные значения реакций и усилий в заданных стержнях от заданной системы связанных подвижных грузов.

Определяемая	Значение определяемой ве-	Значение определяемой	Погрешность
величина	личины при аналитиче-	величины по линии влия-	к аналитическому
	ском расчёте, кН	ния, кН	расчёту (%)
N_1			
N_2			
<i>N</i> ₃ и т.д.			

Пример решения задачи № 2.2. Построить линии влияния для опор A и B, линии влияния продольных сил в стержнях четвёртой панели фермы, а также в правой и левой стойках. Определить значения реакций в опорах и усилия в заданных стержнях. Сравнить результаты с результатами, полученными аналитическим путём. Определить по линиям влияния максимальные и минимальные значения опорных реакции и усилий в заданных стержнях от системы связанных подвижных

- Определяем необходимые тригонометрические функции: $\cos\alpha = 3/3,162 = 0,949$; $\sin\alpha = 1/3,162 = 0,316$; $\cos\beta = 3/6,708 = 0,447$; $\sin\beta = 6/6,708 = 0,894$; $\cos\gamma = 2/3,606 = 0,555$; $\sin\gamma = 3/3,606 = 0,832$; $\cos(\alpha + \gamma) = 0,2635$;
- \bullet Строим линии влияния опорных реакций A и B при верхнем ездовом поясе.
- Строим линию влияния усилия N_1 при верхнем ездовом поясе:
- 1) Груз слева: $\sum M_C^{\text{прав.}} = 0$; $-N_1 \cdot \cos \alpha \cdot 5 B \cdot 6 = 0$; $N_1 = 1,2645B$.
- 2) Груз справа: $\sum M_C^{\text{пев.}} = 0$; $A \cdot 12 + N_1 \cdot \cos \alpha \cdot 6 N_1 \cdot \sin \alpha \cdot 3 = 0$;
- $N_1 = -2,5284 \ A$. Линия влияния усилия N_1 при нижнем ездовом поясе такая же, как при верхнем, так как разрез проходит через ту же панель.
- Строим линию влияния усилия N_2 при верхнем ездовом поясе:
- 1) Груз слева: $\sum M_O$ прав. = 0; $N_2 \cdot \sin \beta \cdot 15 + B \cdot 9 = 0$; $N_2 = -0.671B$.

- 2) Груз справа: $\sum M_O^{\text{лев.}} = 0$; $A \cdot 27 + N_2 \cdot \cos \beta \cdot 6 N_2 \cdot \sin \beta \cdot 18 = 0$; $N_2 = 2{,}013~A$. Линия влияния усилия N_2 при нижнем ездовом поясе такая же, как при верхнем.
- Строим линию влияния усилия N_3 при верхнем ездовом поясе:
- 1) Груз слева: $\sum M_D$ прав. = 0; $N_3 \cdot 6 B \cdot 9 = 0$; $N_3 = 1.5B$.
- 2) Груз справа: $\sum M_D^{\text{пев.}} = 0$; $A \cdot 9 N_3 \cdot 6 = 0$; $N_1 = 1,5$ A. Линия влияния усилия N_3 при нижнем ездовом поясе такая же, как при верхнем.
- Строим линию влияния усилия N_4 при верхнем ездовом поясе:

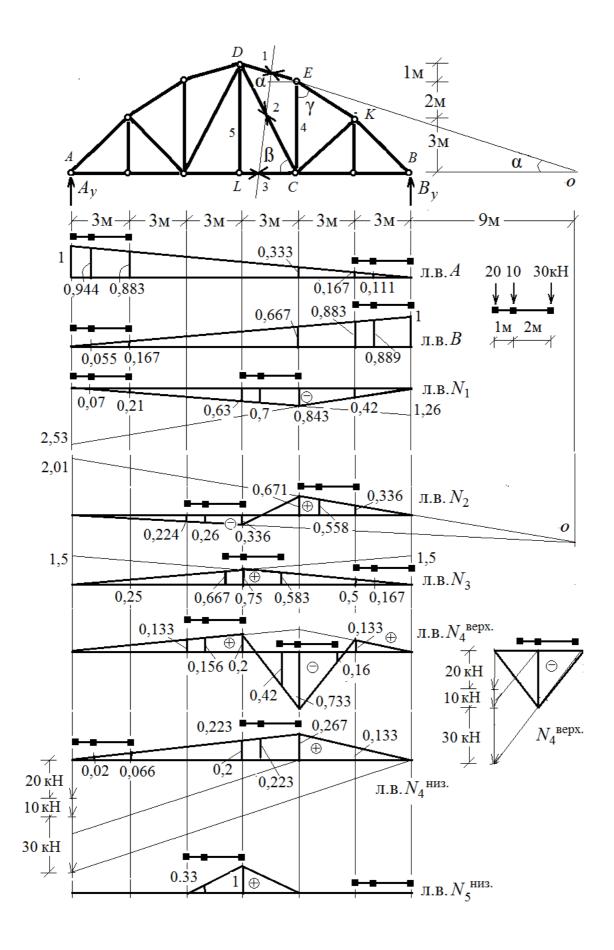
- 1) Груз везде, кроме узла E: (проводим ось X перпендикулярно N_6). $\Sigma X = 0$; $N_4 \cdot \sin \gamma + N_1 \cdot \cos(\alpha + \gamma) = 0$; $N_4 \cdot 0.832 + N_1 \cdot 0.2635 = 0$; $N_4 = -0.3167 N_1$.
- 2) Груз в узле E: $\sum X = 0$; $1 \cdot \sin \gamma + N_4 \cdot \sin \gamma + N_1 \cdot \cos(\alpha + \gamma) = 0$; $1 \cdot 0.832 + N_4 \cdot 0.832 + (-0.843) \cdot 0.82635 = 0$; $N_4 = -0.733$.

Линия влияния усилия N_4 при нижнем ездовом поясе такая же, как при грузе везде, кроме узла E.

- Линия влияния усилия N_5 при верхнем ездовом поясе: $N_5 = 0$.
- Строим линию влияния N_5 при нижнем ездовом поясе:
 - 1) Груз везде, кроме узла L: $\sum Y = 0$; $N_5 = 0$.
 - 2) Груз в узле L: $\sum Y = 0$; $1 + N_5 = 0$; $N_5 = -1$.
- Определяем значения реакций в опорах и усилия в заданных стержнях. Сравниваем результаты с результатами, полученными аналитическим путём в задаче 2.1:

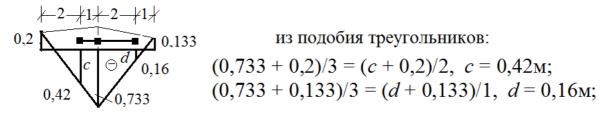
$$A = 80.0,833 + 100.0,333 + 50.0,167 = 108,29 \text{ kH};$$

$$B = 80.0,167 + 100.0,667 + 50.0,833 = 121,171 \text{ kH};$$


$$N_1 = -80.0,21 - 100.0,8428 - 50.0,421 = -122,13 \text{ kH}.$$

$$N_2 = -80.0,112 +100.0,671 + 50.0,3355 = 74,915 \text{ kH}.$$

$$N_3 = 80.0,25 + 100.0,5 + 50.0,25 = 82,5 \text{ kH}.$$


$$N_4 = 80.0,066 - 100.0,733 + 50.0,133 = -61,37 \text{ kH}.$$
 $N_5 = 0.$

• Определяем по линиям влияния максимальные и минимальные значения опорных реакции и усилий в заданных стержнях от системы связанных подвижных грузов. Для этого в необходимых случаях определяем графически положение критической силы.

$$A^{\text{max}} = 20 \cdot 1 + 10 \cdot 0,889 + 30 \cdot 0,833 = 53,88 \text{ kH};$$
 $A^{\text{min}} = 20 \cdot 0,167 + 10 \cdot 0,111 = 4,45 \text{ kH};$
 $B^{\text{max}} = 20 \cdot 0,833 + 10 \cdot 0,889 + 30 \cdot 1 = 55,55 \text{ kH};$
 $B^{\text{min}} = 10 \cdot 0,055 + 30 \cdot 0,167 = 5,56 \text{ kH};$
 $N_1^{\text{max}} = -20 \cdot 0,421 - 10 \cdot 0,28 = -8,43 \text{ kH};$
 $N_1^{\text{min}} = -20 \cdot 0,63 - 10 \cdot 0,7 - 30 \cdot 0,8428 = 44,88 \text{ kH};$
 $N_2^{\text{max}} = 20 - 0,671 + 10 \cdot 0,558 + 30 \cdot 0,3355 = 29,06 \text{ kH};$
 $N_2^{\text{min}} = -20 \cdot 0,224 - 10 \cdot 0,261 - 30 \cdot 0,3355 = 17,15 \text{ kH};$
 $N_3^{\text{max}} = 20 \cdot 0,667 + 10 \cdot 0,75 + 30 \cdot 0,583 = 38,33 \text{ kH};$
 $N_3^{\text{min}} = 20 \cdot 0,25 + 10 \cdot 0,167 = 6,67 \text{ kH};$

при верхнем ездовом поясе:

$$N_4^{\text{max}} = 20.0,133 + 10.0,156 + 30.0,2 = 10,22 \text{ kH};$$

 $N_4^{\text{min}} = -20.0,42 - 10.0,733 - 30.0,16 = 20,53 \text{ kH};$ $N_5 = 0;$

при нижнем ездовом поясе:

$$N_4^{\text{max}} = 20.0,2 + 10.0,223 + 30.0,267 = 14,24 \text{ kH};$$

 $N_4^{\text{min}} = 20.0 + 10.0,022 + 30.0,066 = 2,2 \text{ kH};$
 $N_5^{\text{max}} = 0; N_5^{\text{min}} = -10.0,33 - 30.1 = -33,3 \text{ kH};$

Определяемая	Значение определяемой	Значение определяемой	Погрешность к		
величина	величины при аналитичес-	величины по линии	аналитическому		
	ком расчёте, кН	влияния, кН	расчёту (%)		
A	108,33	108,29	0,03		
В	121,667	121,171	0,4		
N_1	- 122,234	- 122,13	0,08		
N_2	74,944	74,915	0,04		
N_3	82,5	82,5	0		
N_4	- 61,246	- 61,37	0,2		
N_5	0	0	0		

РАСЧЁТНО-ГРАФИЧЕСКАЯ РАБОТА №3

РАСЧЁТ СТАТИЧЕСКИ НЕОПРЕДЕЛИМОЙ СИСТЕМЫ МЕТОДОМ СИЛ

Задание: Рассчитать статически неопределимую раму методом сил. Построить эпюры изгибающих моментов, поперечных и продольных сил. Определить опорные реакции. Исходные данные к задаче определить по таблице № 3.2. и схемам, представленным на рис. 3.2.

Таблица 3.2.

Первая	F_1	F_2	ℓ	Вторая	q_1	q_2	Третья	$I_2:I_1$	h_1	h_2
цифра	кН	кН	M	цифра	кН/м	кН/м	цифра		M	M
шифра				шифра			шифра			
							№ схемы			
0	2	0	5	0	4	0	0	2	3	2
1	0	2	3	1	0	2	1	3	2	4
2	3	0	4	2	3	0	2	4	4	2
3	0	3	6	3	0	5	3	3	3	3
4	4	0	5	4	5	0	4	2	5	2
5	0	4	3	5	0	2	5	4	4	1
6	5	0	4	6	6	0	6	2	3	2
7	0	5	6	7	0	3	7	3	2	4
8	2	0	3	8	2	0	8	4	4	2
9	0	2	4	9	0	3	9	2	5	2

Последовательность расчёта

- 1. Изобразить в масштабе длин заданную расчётную схему рамы с указанием размеров и нагрузок.
- 2. Определить степень статической неопределимости рамы по формуле: $n_{\text{ст.}} = 3\text{K} \text{Ш}$, где K количество замкнутых контуров, Ш количество простых шарниров, включая опорные.
- 3. Выбрать две статически определимые и геометрически неизменяемые системы. По направлению удалённых «лишних» связей приложить неизвестные реакции: X_1 , X_2 X_n . Одну основную систему использовать для расчёта, другую для деформационной проверки.
- 4. Записать в общем виде систему канонических уравнений метода сил для данной расчётной схемы.
- 5. Расчётную схему выбранной основной системы последовательно загрузить единичными безразмерными силами, приложив их по предполагаемому направлению удалённых связей, а также заданной.

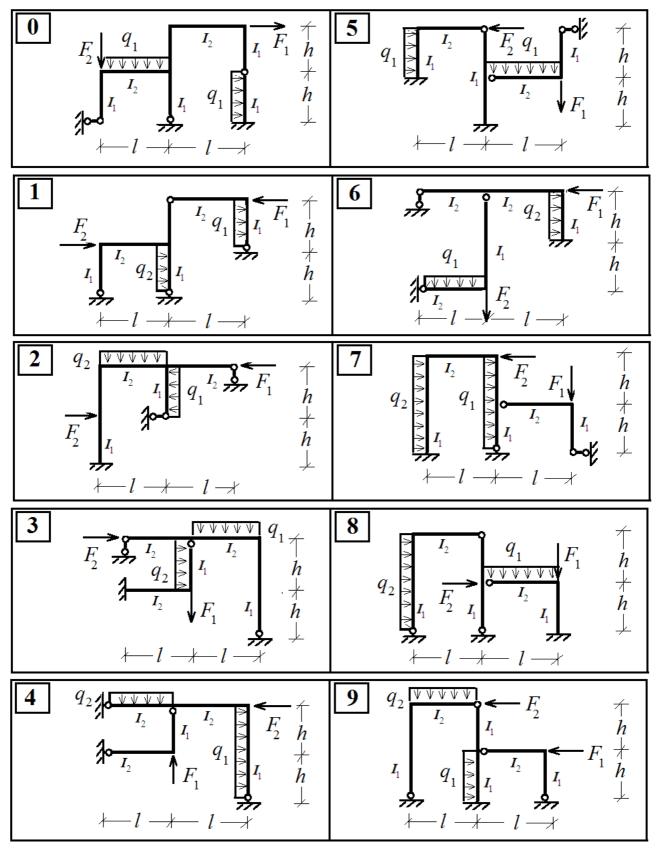


Рис.3.2. Схемы заданий к задаче: № 3.2. РГР № 3

нагрузкой. Построить эпюры моментов M_1^0 , M_2^0 ,.... M_n^0 и M_F^0 , предварительно определив для каждой схемы опорные реакции.

6. Определить коэффициенты при неизвестных системы канонических уравнений (m – число участков интегрирования).

$$\delta_{ik} = \sum_{1}^{m} \int_{0}^{l} \frac{M_i^0 M_k^0}{EI} dx,$$

7. Определить свободные члены системы канонических уравнений.

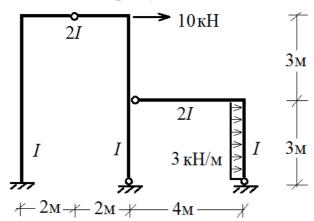
$$\Delta_{i}^{F} = \sum_{i=0}^{m} \int_{0}^{l} \frac{M_{i}^{0} M_{F}^{0}}{EI} dx.$$

- 8. Найденные значения δ_{ik} и Δ_{iF} подставить в канонические уравнения и решить их, определив значения X_i .
- 9. Построить эпюры изгибающих моментов от найденных значений реакций X_i . Для этого надо все ординаты эпюр M_i^0 умножить на соответствующую величину $X_i(M_1^0 \cdot X_I, M_2^0 \cdot X_2 \dots)$.
- 10. Построить эпюру изгибающих моментов для заданной расчётной схемы, воспользовавшись принципом независимости действия сил:

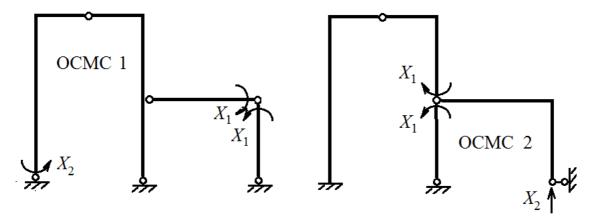
$$M = M_1^0 \cdot X_1 + M_2^0 \cdot X_2 + ... + M_n^0 \cdot X_n + M_F^0.$$

- 11. Проверить равновесие узлов.
- 12. Выполнить деформационную проверку расчёта. Для этого использовать вторую, выбранную ранее основную систему. Построить эпюры изгибающих моментов \overline{M}_i^0 (любую единичную эпюру изгибающих моментов, не подобную M_1^0, M_2^0, M_n^0) или эпюру

$$\overline{M_s^0} = \sum_1^m \overline{M_i^0}$$
 от одновременного действия всех единичных сил, прило-


женных по направлению удалённых связей. При правильно выполненном расчёте должно быть выполнены условия, смысл которых заключается в том, что перемещения по направлению удалённых связей

должны быть равны нулю:
$$\sum_{1}^{m} \int_{0}^{l} \frac{\overline{M_{s}^{0}} M_{F}}{EI} dx = 0$$
 или $\sum_{1}^{m} \int_{0}^{l} \frac{\overline{M_{1}^{0}} M_{F}}{EI} dx = 0$.

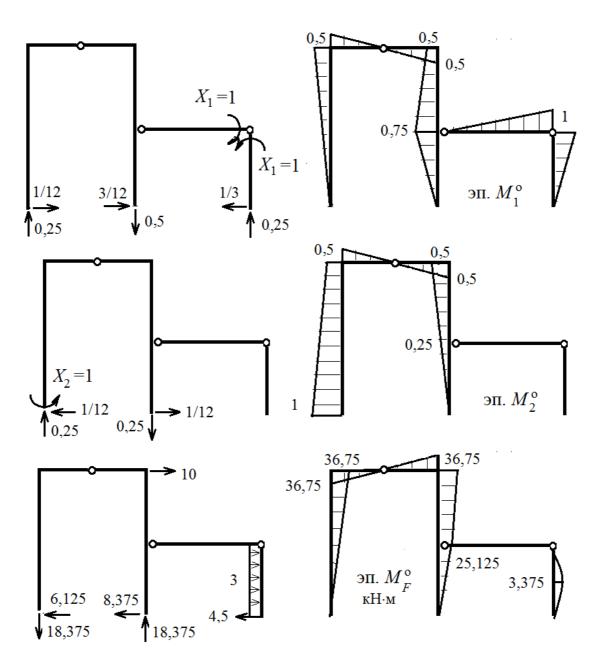

- 13. Построить эпюру поперечных сил Q в заданной расчётной схеме, используя дифференциальную зависимость Q = dM/dx.
- 14. Построить эпюру продольных сил. Значения продольных сил определить, рассматривая условия равновесия узлов рамы. К вырезанным узлам приложить известные поперечные силы, продольные силы и нагрузки и определить неизвестные продольные силы.
- 15. Определить опорные реакции, используя все эпюры.

16. Выполнить статическую проверку всей системы: $\Sigma X = 0$; $\Sigma Y = 0$; $\Sigma M_c = 0$, где с – любая точка.

Пример расчёта: Рассчитать раму методом сил.

- Определяем степень статической неопределимости рамы по формуле: $n_{\text{ст.}} = 3\text{K} \text{III} = 3 \cdot 2 4 = 2.$
- Выбираем две статически определимые геометрически неизменяемые основные системы. Одну для расчёта, другую для проверки.

• Записываем систему канонических уравнений метода сил:


$$\delta_{11} \cdot X_1 + \delta_{12} \cdot X_2 + \Delta_{1F} = 0;$$

$$\delta_{21} \cdot X_1 + \delta_{22} \cdot X_2 + \Delta_{2F} = 0.$$

- Строим эпюры моментов $M_1{}^0$ от X_1 = 1, $M_2{}^0$ от X_2 = 1 и $M_F{}^0$, предварительно определив для каждой схемы опорные реакции.
- Определяем коэффициенты при неизвестных и свободные члены системы канонических уравнений.

$$\delta_{11} = \sum_{1}^{m} \int_{0}^{l} \frac{M_{1}^{0} M_{1}^{0}}{EI} dx = \frac{1}{EI} \frac{1}{2} \cdot 0.5 \cdot 6 \cdot \frac{2}{3} \cdot 0.5 + \frac{1}{EI} \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{EI} \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{EI} \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{EI} \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{EI} \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{EI} \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{EI} \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{EI} \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}{2} \cdot 0.75 \cdot \frac{2}{3} \cdot 0.75 + \frac{1}$$

$$+ \frac{1}{EI} \frac{1}{2} \cdot 1 \cdot 3 \cdot \frac{2}{3} \cdot 1 + \frac{3}{6} (2 \cdot 0, 5 \cdot 0, 5 + 2 \cdot 0, 75 \cdot 0, 75 + 2 \cdot 0, 75 \cdot 0, 5) +$$

$$+ \frac{1}{EI} \frac{1}{2} \cdot \frac{1}{2} \cdot 0, 5 \cdot 2 \cdot \frac{2}{3} \cdot 0, 5 \cdot 2 + \frac{1}{EI} \frac{1}{2} \cdot \frac{1}{2} \cdot 4 \cdot \frac{2}{3} \cdot 1 = 4,083 \frac{1}{EI} \frac{\text{M}}{\text{KH}};$$

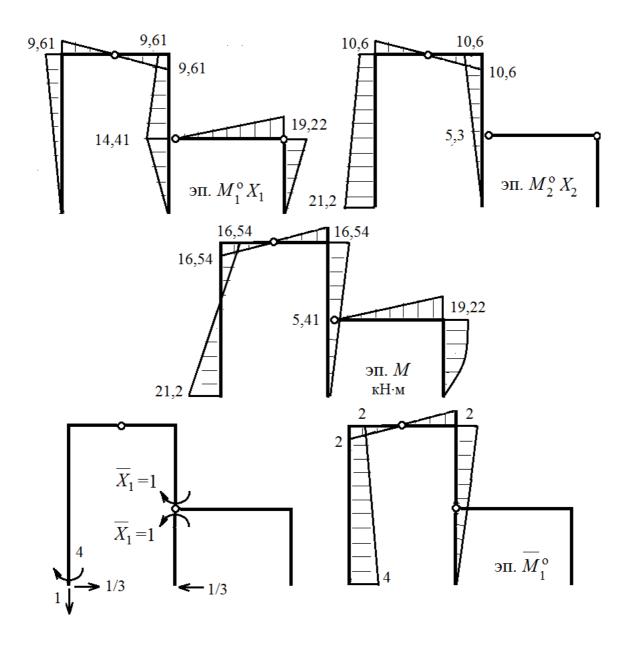
$$\delta_{12} = \delta_{21} = \sum_{1}^{m} \int_{0}^{l} \frac{M_{1}^{0} M_{2}^{0}}{EI} dx = \frac{1}{EI} \frac{6}{6} (2 \cdot 0.5 \cdot 0.5 + 0.5 \cdot 1) + \frac{1}{EI} \frac{1}{2} \cdot 0.75 \cdot 3 \cdot \frac{2}{3} \cdot 0.25 + \frac{1}{EI} \cdot \frac{3}{6} (2 \cdot 0.75 \cdot 0.25 + 2 \cdot 0.5 \cdot 0.5 + 0.75 \cdot 0.5 + 0.25 \cdot 0.5) + \frac{1}{EI} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 0.5 \cdot 2 \cdot \frac{2}{3} \cdot 0.5 \cdot 2 = 2.042 \frac{1}{EI} \frac{M}{\kappa H};$$

$$\begin{split} \delta_{22} &= \sum_{1}^{m} \int\limits_{0}^{l} \frac{M_{2}^{0} M_{2}^{0}}{EI} dx = \frac{1}{EI} \frac{6}{6} (2 \cdot 1 \cdot 1 + 2 \cdot 0, 5 \cdot 0, 5 + 2 \cdot 1 \cdot 0, 5) + \\ &+ \frac{1}{EI} \frac{1}{2} \cdot 0, 25 \cdot 3 \cdot \frac{2}{3} \cdot 0, 25 + \frac{1}{EI} \cdot \frac{3}{6} (2 \cdot 0, 25 \cdot 0, 25 + 2 \cdot 0, 5 \cdot 0.5 + 2 \cdot 0, 25 \cdot 0, 5) + \\ &+ \frac{1}{EI} \frac{1}{2} \cdot \frac{1}{2} \cdot 0, 5 \cdot 2 \cdot \frac{2}{3} \cdot 0, 5 \cdot 2) = 4, 167 \frac{M}{\kappa H}; \\ \Delta_{1F} &= \sum_{1}^{m} \int\limits_{0}^{l} \frac{M_{1}^{0} M_{F}^{0}}{EI} dx = -\frac{1}{EI} \frac{1}{2} \cdot 0, 5 \cdot 6 \cdot \frac{2}{3} \cdot 36.75 - \frac{1}{EI} \cdot \frac{1}{2} \cdot 0, 75 \cdot 3 \cdot \frac{2}{3} \cdot 25, 125 - \\ &- \frac{1}{EI} \frac{3}{6} (2 \cdot 25, 125 \cdot 0, 75 + 2 \cdot 0, 5 \cdot 36, 75 + 36, 75 \cdot 0, 75 + 0, 5 \cdot 25, 125) + \\ &+ \frac{1}{EI} \frac{3}{6} (4 \cdot 0, 5 \cdot 3, 375) - \frac{1}{EI} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 0, 5 \cdot 2 \cdot \frac{2}{3} \cdot 36, 75 \cdot 2 = -121, 75 \frac{1}{EI} \text{ m}; \\ \Delta_{2F} &= \sum_{1}^{m} \int\limits_{0}^{l} \frac{M_{2}^{0} M_{F}^{0}}{EI} dx = -\frac{1}{EI} \frac{6}{6} (2 \cdot 0, 5 \cdot 36, 75 + 36, 75 \cdot 1) - \frac{1}{EI} \frac{1}{2} \cdot 25, 125 \cdot 3 \cdot \frac{2}{3} \cdot \\ 0, 25 - \frac{1}{EI} \cdot \frac{3}{6} \cdot (2 \cdot 0, 5 \cdot 36, 75 + 2 \cdot 0, 25 \cdot 25, 125 + 25, 125 \cdot 0, 5 + 0, 25 \cdot 36, 75) - \\ &- \frac{1}{EI} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot 36, 75 \cdot 2 \cdot \frac{2}{3} \cdot 0, 5 \cdot 2 = -127, 56 \frac{1}{EI} \text{ m}. \end{split}$$

• Решаем канонические уравнения метода сил:

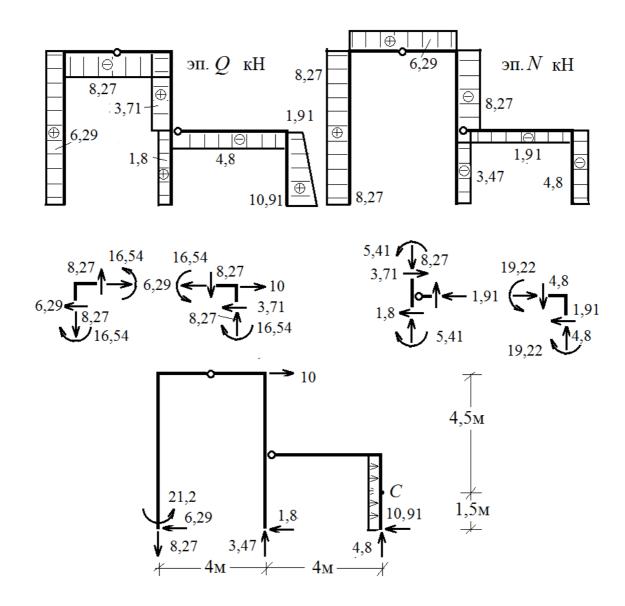
$$\frac{4,083}{EI} X_1 + \frac{2,042}{EI} X_2 - \frac{121,75}{EI} = 0; X_1 = 19,218 \text{ kH·m}$$

$$\frac{2,042}{EI} X_1 + \frac{4,167}{EI} X_2 - \frac{127,56}{EI} = 0; X_2 = 21,2 \text{ kH·m}$$


Проверка: $2,042 \cdot 19,218 + 4,167 \cdot 21,2 - 127,56 = 0,01$.

Ошибка: $0.01/127,56 \cdot 100\% = 0.008\%$

- Строим эпюры $M_1{}^0 \cdot X_1$ и $M_2{}^0 \cdot X_2$
- Строим эпюру изгибающих моментов в заданной системе $M = M_1{}^0 \cdot X_1 + M_2{}^0 \cdot X_2 + M_F{}^0$
- Выполняем деформационную проверку, построив во второй основной системе единичную эпюру моментов.


$$\sum_{1}^{m} \int_{0}^{l} \frac{\overline{M_{1}^{0}} M_{F}}{EI} dx = \frac{1}{EI} \frac{6}{6} (2 \cdot 2 \cdot 16,54 - 2 \cdot 4 \cdot 21,199 + 4 \cdot 16,54 - 21,199 \cdot 2) +$$

$$+\frac{1}{EI}\frac{1}{2}\cdot 1\cdot 3\cdot \frac{2}{3}\cdot 5,412+\frac{1}{EI}\frac{3}{6}\left(2\cdot 2\cdot 16,54+2\cdot 1\cdot 5,412+1\cdot 16,54+2\cdot 5,412\right)+$$
 $+\frac{1}{EI}\frac{1}{2}\cdot \frac{1}{2}\cdot 2\cdot 2\cdot \frac{2}{3}\cdot 16,54=\frac{1}{EI}\left(-79,67+79,64\right)=\frac{1}{EI}0,03.$
% ошибки: $\frac{0.03}{79,67}100\%=0,04\%<1\%.$

- Строим эпюру Q в заданной расчётной схеме, используя дифференциальную зависимость Q = dM/dx.
- Строим эпюру продольных сил N. Значения продольных сил определяем, рассматривая условия равновесия узлов рамы.
- Проверяем равновесие узлов.

- Определяем опорные реакции, используя все эпюры.
- Выполняем статическую проверку всей системы:

$$\Sigma X = 0$$
; $10 - 6.29 - 1.8 - 10.91 + 3.3 = 0$; $\Sigma Y = 0$; $4.8 + 3.47 - 8.27 = 0$; $\Sigma M_c = 0$; $10.4.5 + (6.29 + 1.8 + 10.91) \cdot 1.5 + 3.47 \cdot 4 - 8.27 \cdot 8 - 21.2 = 0.02 \approx 0$.

РЕКОМЕНДУЕМАЯ ЛИТЕРАТУРА

- 1. *Бабанов В.В.* Строительная механика. В 2т. Учебник для студ. учреждений высшего проф. образования. М.: Издательский центр «Академия», 2011. 288с.
- 2. *Масленников А.М.* Начальный курс строительной механики стержневых систем. 2-е изд., доп. СПБ.: ООО «Проспект науки», 2009. 240с.
- 3. *Масленников А.М.*, *Воронина В.М.* Основы расчёта стержневых систем на устойчивость: учебное пособие / ЛИСИ. –Л. 1980. -66с.